
A Formal and a Cognitive Model of Anaphors in Java

Sebastian Lohmeier
sl@monochromata.de

Abstract
Two prototypical models are in development to demonstrate the feasibility of programming with direct
and indirect anaphors. A formal model is developed based on the Eclipse IDE. The model generates
executable code, handles referential ambiguity, highlights anaphora relations, and permits programmers
to switch between source code with anaphors and normal Java code. A cognitive model is developed to
forecast when a programmer will be able to understand specific indirect anaphors and when normal Java
code should be presented instead. Both models lay the foundation for indirect anaphors that are resolved
at edit-time and that shorten source code in cases when comprehensibility is expected to be maintained.

1. Introduction
While reference in statically typed object-oriented programming languages like Java typically uses local
variables that declare an identifier, it would also be possible to refer using anaphors that do not require
the declaration of an identifier but exploit readily-available textual information. An instance created
by the expression new ServiceRegistrar() could e.g. be referred to using the direct anaphor
serviceRegistrar that is based on the recurrence of the words service and registrar in the
direct anaphor and its related expression new ServiceRegistrar(). It would also be possible to
refer to parts of wholes. E.g. given a new RegistrarLocator() and the knowledge that the getter
method RegistrarLocator.getRegistrar() returns a ServiceRegistrar instance, the
indirect anaphor serviceRegistrar could be used to refer to the service registrar available from
the previously-mentioned new RegistrarLocator().

Lohmeier (2015) attempted to test experimentally when indirect anaphors in Java are understood by
programmers and when they are not. In the experiment, it could be shown that indirect anaphors based
on less familiar part-whole relations are understood less easily than indirect anaphors based on more
familiar part-whole relations. It remained unclear, whether indirect anaphors based on more familiar
part-whole relations are understood as easily as normal Java code. It could not be shown reliably that
indirect anaphors based on well-known part-whole relations improve the comprehension of expert pro-
grammers. Effects of indirect anaphors on task durations were inconclusive. Responses to the post-test
questions and statements that participants made during de-briefing indicated that the use of anaphors
could benefit from a number of modifications. Programmers might benefit from (indirect) anaphors
while authoring (instead of reading) source code. Anaphors should, in addition, come with the typical
tool support of IDEs (e.g. marking other occurrences of a name at the current cursor position and going
to the declaration of the current name) that was disabled during the experiment.

Because programming can be modelled formally and cognitively, a prototypical formal model of
anaphors has been implemented besides the prototypical cognitive model that had been implemented
as part of Lohmeier (2015). While the formal model was implemented in the Eclipse IDE to test
whether it is possible to switch between anaphors and normal Java code, the cognitive model was im-
plemented to see whether jACT-R1, an Eclipse-based re-implementation of the cognitive architecture
ACT-R (Anderson et al., 2004) can be used to compute activation levels of knowledge representations
automatically derived from the abstract syntax tree (AST) of the Eclipse IDE. Both models are briefly
described in the following.

2. JDT with anaphors
The Java development tools (JDT) of the Eclipse IDE2 have been used to create a prototypical editor
for anaphors. The editor is based on the Java editor of the JDT. In the editor, anaphors are translated at

1http://www.jact-r.org/
2http://www.eclipse.org/jdt/



Figure 1 – The direct anaphor b and the indirect anaphor int1 in a Java editor that supports
anaphors (left) and the code generated at edit-time in a normal Java editor (right). The editor on
the left marks the occurrences of the referent of the indirect anaphor int1 at the cursor position
as well as its related expression new B().

Related expression Anaphora resolution Referentialisation

CIC The related expression is
a class instance creation expres-
sion (e.g. new Service())

DA1Re The anaphor refers to
the referent of the related expres-
sion.

Rn The referent of the anaphor
has a name that is equal to
the simple name that acts as
anaphor.

LVD The related expression is
a declaration of a parameter or
a local variable (e.g. Service
s= new Service()).

IA2F The anaphor refers to the
field of the related expression
that the referentialisation strat-
egy can be applied to.

Rt The referent of the anaphor
has a type with a name that is
equal to the simple name that
acts as anaphor.

IA2Mg The anaphor refers to the
return value of the getter method
of the related expression that the
referentialisation strategy can be
applied to.

Table 1 – Strategies available for anaphora resolution in the formal model

edit-time, i.e. when entered, instead of at compile-time. The prototype currently supports combinations
of the related expressions, anaphors resolution strategies and referentialisation strategies listed in Table
1. (The left part of Figure 1 contains the related expression new B() in line 6, followed by the indi-
rect anaphor int1 in line 7 that combines the strategies CIC, IA2F and Rn from Table 1.) Referential
ambiguity is eliminated in a small number of cases. When there is a local variable declaration that is ini-
tialised with a class instance creation expression, both B b = new B() and new B() are potential
related expressions and the local variable declaration is preferred over the contained class instance cre-
ation expression. When a getter method declaration public Integer getValue() { return
int1; } and a field declaration public Integer int1; are found as potential referents of the
indirect anaphor int1, the getter method declaration is preferred over the field declaration.

Figure 1 shows two anaphors b and int1 (on the left) and the code generated by the refactoring that
translates anaphors into normal Java code (on the right). The use of the JDT acknowledges the influence
of the programming environment highlighted by Green (1989) not only by shifting the translation of
anaphors from compile-time to edit-time but by providing typical guidance to programmers like the
mark occurrences feature that in the left part of Figure 1 marks the related expression new B() (the
whole) of the indirect anaphor int1 (the part). Guidance like mark occurrences is expected to ease
comprehension of indirect anaphors based on less well-known part-whole relations.



Figure 2 – Source code of the RegistrarLocator class with fixations (shown as red crosses)
of a single participant. The code shows (1) the accessibility modifier public, (2) the return type
ServiceRegistrar and (3) the method name getRegistrar().

Anaphors are translated into normal Java code by applying a refactoring. The refactoring is applied
automatically when the anaphors-enabled editor is used to enter anaphors. While the refactoring gen-
erates Java code, the generated statements and expressions are hidden by the anaphors-enabled editor –
only the entered anaphor is shown in this editor. The editor therefore separates the user-interface and
the knowledge representation functions of the programming language. When the normal Java editor
is used instead, no anaphors are display but all Java code is shown. Java code is saved to disk without
anaphors. This enables programmers to write anaphors irregardless of whether other programmers might
understand them.

When a programmer opens a file she added anaphors to previously, they could be restored automatically,
e.g. from a separate meta-data store on disk. The prototype therefore shows that edit-time anaphors
can be implemented in an editor for the Eclipse IDE. The editor can be used besides the normal Java
editor of Eclipse. It would also be possible to generate anaphors for previously unread code. A cognitive
model could be used to decide when to generate such anaphors.

3. A model of anaphor comprehension in jACT-R
Eye movement data obtained in Lohmeier (2015) has been input into a cognitive model of source code
reading that re-generates fixation durations. The fixations of a programmer reading source code are
therefore mapped to words displayed by the Java editor of Eclipse (see Figure 2). The words in the
source code are mapped to nodes in the AST of Eclipse (see the left part of Figure 3) and lead to a
sequence of fixation durations on AST nodes. The AST nodes are also used to generate an intermediate
knowledge representation (see the right part of Figure 3). The intermediate knowledge representation
is fed into a jACT-R model that creates chunks of declarative knowledge for which activation values
are computed. The sequence of fixated AST nodes is fed into the jACT-R model and the model re-
generates the durations of these fixations. The duration of a re-generated fixation is calculated based
on the activation of the chunk in the declarative memory of the jACT-R model that represents the AST
node underlying the fixation. The more often a chunk is retrieved, the more active it is, but activation
decays with time. Fixations that involve a retrieval of a chunk are shorter the higher the activation



Figure 3 – Abstract syntax tree (left) and intermediate knowledge representation (right) for the code
shown in Figure 2. The knowledge representation is input into a jACT-R model that creates chunks
in declarative memory from the intermediate representation.

of the chunk at the time of the retrieval, because retrieval is faster for higher activation. The jACT-R
model is assumed to model the comprehension of anaphors in source code, if it re-generates the fixation
durations input to it. This is not the case so far, the model currently over-estimates fixation durations
(Lohmeier & Russwinkel, 2015). If the generated fixation durations are reasonably close to the durations
of experimentally-obtained fixations input into the model, the model may be assumed to match cognitive
processing in humans reading anaphors in source code in situations resembling the experimental setup.
At that point, the activation values of a chunk computed by the model might be used to forecast whether
it will be easy or hard to understand an indirect anaphor whose comprehension requires the chunk to be
retrieved from memory.

4. Conclusion
The two prototypes demonstrate that it is possible to implement edit-time anaphors in a Java-based editor
and to model their comprehension in jACT-R. Both models could be integrated by using the cognitive
model to forecast whether a file of source code opened in a new editor should be displayed with indirect
anaphors or with normal Java code. That would permit to vary redundancy in source code in order to
improve the comprehension of individual programmers: programmers would be presented with indirect
anaphors that do not repeat the relations that they already know well, relations that are not well known
would be presented as normal Java code that explicates these relations.

5. References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated

theory of mind. Psychological Review, 111(4), 1036–1060.
Green, T. R. (1989). Cognitive dimensions of notations. In A. Sutcliffe & L. Macaulay (Eds.), People

and computers V (pp. 443–460). Cambridge: Cambridge University Press.
Lohmeier, S. (2015). Experimental evaluation and modelling of the comprehension of indirect

anaphors in a programming language. Version 1.3. Retrieved 2016/05/16, from http://
monochromata.de/master_thesis/

Lohmeier, S., & Russwinkel, N. (2015). Explaining eye movements in program comprehension using
jACT-R. In Proceedings of the 13th international conference on cognitive modeling (ICCM).


