
Continuing to Shape
Statically Resolved Indirect Anaphora

for Naturalistic Programming
A transfer from cognitive linguistics to the Java programming language

Sebastian Lohmeier

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
nc-nd/3.0/de/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Contents

List of Future Work vii

Preface ix

1 Introduction 1
1.1 Related Work . 2
1.2 Aim . 3
1.3 Problem . 4
1.4 Organization . 4

2 Reference in Natural Languages 7
2.1 Reference, Names, Deixis and Anaphora . 7
2.2 Common and Proper Names . 8
2.3 Direct Anaphora . 9

2.3.1 Pronominal anaphora . 9
2.3.2 Ellipsis . 10
2.3.3 Definite descriptions . 11

2.4 Cognitive Foundations . 11
2.4.1 Mental representations of knowledge 12
2.4.2 Text-world models . 12
2.4.3 Focus and activity . 13

2.5 Indirect Anaphora . 14
2.5.1 Anchoring based on thematic roles . 15
2.5.2 Meronymy-based anchoring . 17
2.5.3 Schema-based anchoring . 18
2.5.4 Inference-based anchoring . 21
2.5.5 Anchoring of indirect anaphors . 23

2.6 Summary . 24

3 The Relations Between Natural Languages and Programming Languages 27
3.1 Programming Languages Considered Languages 27
3.2 Naturalistic Programming Languages . 27
3.3 Summary . 28

4 Reference in Java 29
4.1 Names . 29
4.2 Deixis . 30

iii

Contents

4.3 Zero Anaphors . 31
4.4 Requirements for Indirect Anaphora in Java 32
4.5 Summary . 32

5 Constructing a Metaphor 33
5.1 Pragmatics . 34
5.2 Syntax . 35
5.3 Cognitive Foundations . 37

5.3.1 Representations of knowledge . 38
5.3.2 Abstract syntax trees as text-world models 41
5.3.3 Defaults, initializers and declared types 43
5.3.4 When elaboration happens . 44

5.4 Semantics . 44
5.4.1 Indirect anaphors . 45
5.4.2 Anchoring . 46
5.4.3 Referential ambiguity . 48

5.5 Naturalness . 48
5.6 Summary . 49

6 Indirect Anaphora for Java 51
6.1 General Properties of Indirect Anaphors in Java 51

6.1.1 Preconditions . 51
6.1.2 Postconditions . 51
6.1.3 Invariants . 51

6.2 Kind 1: Anchoring Based on Headers of Invocables 52
6.2.1 Example . 52
6.2.2 Preconditions . 53
6.2.3 Postconditions . 53
6.2.4 Invariants . 54

6.3 Kind 2: Anchoring Based on Fields and Accessors 54
6.3.1 Accessors . 55
6.3.2 Example . 55
6.3.3 Preconditions . 56
6.3.4 Postconditions . 57
6.3.5 Invariants . 58

6.4 Kind 3: Inference-Based Anchoring . 58
6.5 Summary . 58

7 Implementation 59
7.1 Limitations of the Prototype . 59
7.2 Kind 1: Anchoring Based on the Headers of Invocables 60

7.2.1 Example . 60
7.2.2 Anchoring algorithm . 62

7.3 Kind 2: Anchoring Based on Fields and Accessors 63

iv

Contents

7.4 Test Case Nomenclature . 64

8 Evaluation and Outlook 67
8.1 Aims . 67
8.2 Applicability . 68
8.3 Correctness of Resolution . 69
8.4 Compatibility . 70
8.5 Summary . 70

9 Summary and Conclusions 71

Bibliography 73

v

List of Future Work

2.1 Deixis and anaphora . 8
2.2 Include direct anaphora, based on Schwarz-Friesel’s model 11
2.3 Depth of conceptual decomposition . 12
2.4 Instantiation of nodes and specification . 13
2.5 Research on indirect anaphors in technical texts 15
2.6 Creation of concepts and conceptual schemata . 20
2.7 Involvement of entries from the mental lexicon 20
2.8 Cover complex anaphors . 21
2.9 Further understanding of inference . 22
2.10 Details on thematic progression . 24
3.1 Criticizing the concept of natural language . 28
5.1 Scripts in Java . 41
5.2 Functions of default values of schemata . 43
6.1 Underspecification of arguments . 54
8.1 Potential for evaluation . 67

vii

Preface

This is the successor to my submitted but abrupt bachelor thesis. While the implementation
is at the same stage as in the thesis, the text was elaborated and corrected for this version and
has a number of ideas that had not been mentioned or not been detailed in the thesis. While I
hope that the text is intelligible, both the text and the implementation are just a start and will
be subject to future modification and extension. However, I wanted to get this version out to be
able to get feedback that I did not get while writing my thesis because I am quite reluctant to
handing out texts for which even I myself have dozens of points to criticize. If you read this
text and have comments about it, please email me. There is also a webpage for this document
at http://monochromata.de/shapingIA/ that provides the source code of the implementation de-
scribed in chapter 7. The page will also inform about new versions of this document when they
are available.

My thesis was partly motivated by me reading about Metafor (see [LL05]) a couple of years
ago and I meant it to give me an orientation in the field of programming in natural languages or
languages that are closer to natural languages. While I had wished for a curriculum that is less
like ISDN and more like the Internet instead (in terms of openness, not speed), I acknowledge
that the programming systems chair granted me all freedoms possible while I was writing my
thesis. Its members have been very kind and helpful in supporting my thesis but also during
the courses I had had with them before. I am grateful to Andreas Thies who supervised my
thesis, Daniela Keller, Christian Kolle and chairman Friedrich Steimann who all participated
when I outlined early results of my work and gave as much feedback as was possible at that
time. Special thanks go to Roman Knöll of Universität Darmstadt, who sent me the results of
the Pegasus Project’s work on naturalistic references and took the time to answer my questions
on his work. I thank Susan Segebard who reviewed early parts of my thesis. I am also indepted
to my mother who supported me financially at the time when I wrote the thesis and tolerated my
limited mood during that time.

Some notes on wording: although it is common in academic texts that a single author refers
to himself as we, I do not do so. Similarly, I will use the pronoun one instead of using you as
indefinite pronoun.

Sebastian Lohmeier
sl@monochromata.de

ix

1 Introduction

The basic concept of allowing a person to communicate with a computer in his
natural language will surely take many many years, and may exceed the lifetime of
some of us. This does not mean that it is not a goal worth striving for.

These closing words from Jean E. Sammet’s 1965 talk [Sam66] will, out of context, normally
not be doubted. If one adds the title of the talk: The use of English as a Programming Language
it can be expected that computer scientists shiver. Some may do because it is a goal still far from
being reached and it is not clear how it could be reached. Others may shiver in anger because
they doubt that the goal could be worth striving for. This work serves to calm in both respects –
not by presenting a ready-to-use solution, but by providing a tangible step into the direction of
that goal.

In her talk, Sammet lays out two kinds of approaches to get to programming in natural lan-
guage: top-down approaches that depart from natural language and attempt to accept syntacti-
cally unrestricted input with only a certain rate of successfully interpreted utterances that is to
be improved in the course of development. Alternatively, bottom-up approaches depart from
programming languages and guarantee the correct interpretation of all utterances while aimig at
advancing the language over time to get closer to a natural language.

Early implementations of the former approach were actually a mix of both approaches in
that they only recognized natural language utterances that complied on the basis of a restricted
grammar, laid within a limited semantic domain and were still prone to error. In the Natural
Language chapter of his book Software Psychology, Shneiderman provides an overview and
evaluation of natural language systems up to the end of the 1970’s [Shn80, 198–213] that makes
clear how verbose some of these systems had been. Regular users must have been annoyed at
that over time. Shneiderman also points out that proactive inference can make these systems
difficult to use: their similarity to English makes it hard to recall which subset of the English
grammar they recognize, leading to errors in writing with these systems while the texts were
easy to read and comprehend1. That natural language complicates the use and development of
computer programs is also the core of Dijkstra’s criticism [Dij78].

The programming language COBOL, in whose construction Sammet took part, can be re-
garded an instance of the bottom-up approach that tries to mimic English through keywords and
word order but does not adhere to the grammar of English. Bryan Higman criticizes COBOL
for this very feature [Hig67, 144], but adds that pronouns known from natural languages provide
a way to shorten utterances in programming languages as had already been proposed for the
programming language ALGOL [Hil65, 71-2].

1Cook reported the same for AppleScript in 2007 [Coo07, 1-20] even though he noted that the project had been
rather constrained. It may be that longer-lasting, well staffed projects are more successful in enabling users to
program in natural language.

1

1 Introduction

Higman notes that it is not trivial to determine what a pronoun (that can function anaphori-
cally, see below) refers to in natural language. While anaphora resolution2 is still non-trivial, it
is better understood by linguists these days. There have thus been recurring proposals to include
more forms of anaphora in programming languages (see Related Work below).

It should be noted that recently the term naturalistic programming (NP) has been introduced
while programming in natural language or natural language programming (NLP) were used
before. Naturalistic programming indicates a way of programming that is rooted in the bottom-
up approach proposed by Sammet. The term will be further discussed in section 3.2.

My step towards the goal of programming in natural language can be clarified here already: I
will use a bottom-up approach by adding forms of anaphora to Java. This does of course relate
to programming in English in the same way that early rocket science is related to flying to Mars:
the small steps are motivated by the bigger goal and while it remains unclear how far away the
actual goal is, the value that the immediate steps provide for themselves gains relevance.

1.1 Related Work

This work was motivated by the broadly related work mentioned in the previous section. Work
from the domain of linguistics that I will refer to in chapter 2 provides a basis for this work. The
work listed in this section I consider closely related. I.e. the works listed here seek to bring use
of programming languages closer to the use of natural languages by proposing or implementing
means of reference known from natural languages for programming languages3.

After excluding most related work, two projects remain that have influenced this work, one
merely pointing out the field to be worked on and the other one doing early work in the field. In
both publications nature and intuition could be referred to more critically and, due to the early
character of the research, both leave room for backing from cognition, linguistics and philosophy
of language as well as empirical evaluation of results.

Lopes et al. [LDLL03] coined the term naturalistic programming and pointed out that current
programming languages support only a limited number of kinds of anaphora, most of which
are said to be structual, while some limited forms of temporal anaphora are said to have been
introduced by aspect-oriented programming (AOP). They propose that more kinds of anaphora
be added to programming languages, leading to naturalistic programming that they distinguish
from programming in natural language and end-user programming. Since they mainly aim at
re-generating interest in the topic, they include an extensive overview of related work, e.g. re-
search in cognition, cognitive semantics and metaphors as part of terminology used in computer
science. Their account of anaphora in linguistics, however, is syntax-heavy.

2Anaphora as used within this work corresponds to the linguistic term: an anaphora is a relation between an item in
a text (called anaphor) and a previously mentioned item (named antecedent or anchor) by which the antecedent
contributes to the meaning of the anaphor. An anaphor hints at its potential antecedent (presupposes it in linguistic
terms). The process of locating the actual antecedent presupposed by an anaphor is called anaphora resolution.

3There is actually a gap between the work I consider closely related and the other works I reference. A lot of
literature is available that fits into this gap. I am aware of that literature, but have not not able to consider it due
to time constraints. Topics that fall into the gap include end-user programming, meta-, literary-, aspect-oriented-
and domain-specific programming and alternative means of method invocation.

2

1.2 Aim

The Pegasus project [KM06] developed a run-time model for natural language programming.
[Hen08] extends Pegasus by analyzing existing means of reference in programming languages
and proposes and implements a number of new dynamically-resolved reference mechanisms
based on means of reference in natural language for what appears to be a subset of English. The
types of reference are quite diverse and feature quantifiers and attributes, indirect anaphora are,
however, not implemented. [Sta09] transfers these dynamic references to a modified version of
Java called Rava by connecting the run-time models of Pegasus and the Java Virtual Machine
(JVM), making Rava a naturalistic programming language. Resolution of references is based on
a history list that contains potential antecedents, sorted in the order of appearance. The impact
of control structures on referencing is not treated and the three works on Pegasus do not draw
parallels to cognitive linguistics. The Pegasus project is still active: Roman Knöll is working
on his dissertation, that will include a detailed discussion of the term naturalistic programming
which is highly desirable but yet outstanding in the current literature. The project also aims at
implementing compile-time resolution of anaphors.

1.2 Aim

Although the idea of programming in natural language or anything closer to it than current
programming languages motivated this work, I used the related works as a guidance to narrow
down the topic to statically resolved indirect anaphora to have a topic of manageable size as well
as to be able to yield concrete and novel results. The search for literature on linguistics further
revealed a model from cognitive linguistics that proved to be central for my work.

In general, I consider this work a discovery of unsettled territory. I will look for practical
applications of indirect anaphora in order to verify the theoretical transfer of the concept of
indirect anaphora. Because the way towards these applications is integral to this work, new
issues raised are considered part of the outcome of the work. Some of these issues have been
highlighted throughout the text in boxes labeled future work that are indexed on page vii to make
it easier for readers of this work who want to work on the same topic to figure out an own starting
point.

The following aspects are crucial to this work:

• Indirect anaphora were chosen to be implemented.

• A bottom-up approach is adopted by basing the implementation on an existing program-
ming language (Java) and considering the impact that the complexity of this language has
on the concept of indirect anaphora.

• Indirect anaphora in Java will be resolved at compile-time to exploit information easily
accessible within the abstract syntax tree of the compiler.

• An existing cognitive model was found in the literature and will be used as the basis of
the implementation.

• The nature of the relation between natural languages and programming languages will be
discussed for the anticipated transfer will happen along this relation.

3

1 Introduction

1.3 Problem

Now that aims are clear, before discussing the organization of the document, two examples of
indirect anaphora taken from later chapters are given to illustrate what problem is to be solved
by adding indirect anaphors to Java. The simplest form of indirect anaphora allows the result of
a method invocation to be accessed without storing it in a local variable. I.e. instead of storing a
result in a local variable as in

Result result= new JUnitCore().runMain(system, args);
system.exit(result.wasSuccessful() ? 0 : 1);

it can be accessed through the indirect anaphor .Result:

new JUnitCore().runMain(system, args);
system.exit(.Result.wasSuccessful() ? 0 : 1);

A more complex kind of indirect anaphor allows the return value of an accessor to be accessed
by providing the type of the return value of the accessor. Instead of invoking the highlighted
accessor as in

view.getDrawing().fireUndoableEditHappened(edit = new
CompositeEdit("Punkt verschieben"));

Point2D.Double location =
view.getConstrainer().constrainPoint(
view.viewToDrawing(getLocation()));

the indirect anaphor .Constrainer is used:

view.getDrawing().fireUndoableEditHappened(edit = new
CompositeEdit("Punkt verschieben"));

Point2D.Double location = .Constrainer.constrainPoint(
view.viewToDrawing(getLocation()));

Both examples will be detailed in chapter 6.

1.4 Organization

This work is interdisciplinary in that it applies cognitive and linguistic concepts to computer
science. The chapters reflect this interdisciplinarity through a gradual transition from cognitive
linguistics to computer science in their order of appearance.

The second chapter defines basic terms related to reference and anaphora, introduces the con-
cepts of anaphora and indirect anaphora. Cognitive models are described that are required to
understand how humans resolve indirect anaphora. The models are applied to text samples to
detail the resolution of different forms of indirect anaphora.

The fact that natural languages and programming languages are called languages but attempts
to program in English failed motivated chapter 3 that outlines the relations between natural
languages and programing languages and discusses the term naturalistic programming in the
context of these relations.

4

1.4 Organization

In the fourth chapter I analyze existing means of reference implemented in the Java pro-
gramming language using the terminology from chapter 2 and develop requirements for indirect
anaphors in Java.

The fifth chapter integrates the findings from the preceding three chapters into a metaphor
of indirect anaphora transferred from natural language to a dialect of Java. The sixth chapter
details specific kinds of indirect anaphors and chapter seven describes an implementation of
what has been laid out in chapters five and six. The description of the implementation serves as
a reference that unlike the other chapters does not close with a summary.

The two final chapters provide an evaluation and an outlook as well as a summary and con-
clusions.

5

2 Reference in Natural Languages

Reference is an integral part of natural language1. Within the field of linguistics, semantics and
pragmatics deal with reference extensively because reference constitutes meaning. Cognitive
science comes into play when attempts are made to explain how readers resolve reference. Syn-
tax plays a role in reference as well, especially by restricting possible reference, but indirect
anaphora, the main form of reference in this work, is relatively independent of syntax which is
why syntax is not devoted special attention in this chapter.

Linguists do not only deal with language in an abstract sense, but also concrete instances of
language. Semanticists do e.g. treat forms ranging from parts of words to texts. Linguistic
models of text are often not restricted to writing but can cover speech as well. Thus, a text can
be characterized as a larger coherent utterance. When I use the terms reader, writer, to read or
to write this does not mean that the model underlying the discussion would necessarily differ
were a listener and a speaker involved instead.

While this work is focused on indirect anaphora, it is necessary to delineate indirect anaphora
from other means of reference. For natural languages this can be done by quoting the literature
as part of this chapter, for programming languages I discuss this matter using the example of
Java in chapter 4. To maintain a close relation between natural language and programming
languages, all samples in this chapter have been taken from the Java Language Specification
[GJSB05]. This choice of a specification from the domain of computer science in preference to
texts portraying everyday life typically found in linguistics is an explicit one. It is due to the
(unproven) assumption that there could be a relevant difference between the use of reference
in specifications and the use of reference in non-technical texts. I suppose that if a kind of
reference is used in specifications written in natural language, then this kind of reference could
also be useful in the implementation of the specification written in a programming language.

This chapter begins with an introduction to reference in general and explains means of direct
anaphora before cognitive foundations are introduced for the discussion of indirect anaphora
central to this chapter.

2.1 Reference, Names, Deixis and Anaphora

Attempts to discuss reference can be quite informal, starting with the "action of picking out or
identifying with words" [Sae03, 23] 2,3. For this work it is important to restrict reference to

1Although the examples given in this chapter are given in English, the concepts they illustrate can be found in other
languages as well. E.g. samples from German were used in [Sch00].

2Treatment of reference in linguistics typically ignores explicit references like inter-textual pointers or references
to the bibliography of technical texts, its index or cross-references.

3Definitions of reference can also be quite complex, as in the case of Consten’s definition that is reader-centric,
process-oriented and cognitive (see [Con04, 56]) but would be too detailed for the current state of this work.

7

2 Reference in Natural Languages

a relation between linguistic expressions and extra-linguistic entities that is established by the
reader [Sch00, 22]. E.g. a name in a sentence can be used to refer to a person. Following
Schwarz-Friesel, I will call the the process of establishing reference referentialization.

Three terms are frequently used in linguistics when reference is talked about: names, deixis
and anaphors. Names will be treated in the next section. A rough idea of deixis and anaphors is
that both are functions fulfilled by syntactic entities and that the former refers to sensually per-
ceivable referents and the latter relate within texts (see [Con04, 6] with different terminology).
Following this definition, referring to the reader of a text using the word you is a form of deixis,
but relating to a character in a novel that had been introduced in the prior text is anaphoric.

Future Work 2.1 (Deixis and anaphora) [Con04] provides an overview of the history of the
two terms deixis and anaphora and how they have been related to each other (in all possible
constellations). Attempts to delineate the two terms have often been problematic, e.g. when deal-
ing with reference to abstract entities or fantasy. Triggered by the observation that some words
can establish both anaphora and deixis and the user cannot have a model for either anaphora
or deixis exclusively, Consten proposed a model that integrates both anaphora and deixis and
includes the reader’s gradual distinction between the two. Following Schwarz-Friesel’s work
[Sch00] on domain-based anaphora, Consten included deixis as well.

In this work I do not differentiate between anaphora and deixis in detail. When explaining
natural language background, I will detail anaphora only. It would be interesting to treat deixis
as well, though. Consten’s work seems to be a good starting point for that.

Whether deixis can occur in source code of computer programs will be contemplated in section
4.2, names and anaphora will now be looked at.

2.2 Common and Proper Names

There are basic definitions of names like: "Names after all are labels for people, places, etc. and
often seem to have little other meaning." [Sae03, 27] that are handy, or more differentiated ones,
like van the Langendonck’s [Lan07, 87ff.] that will be used here. Important in the context of
this work is that van Langendonck specifies that a proper name (also: proper noun) (1) refers to
a unique entity, that is (2) highlighted within a class of entities by being given a name, (3) the
meaning of the name does not (anymore) determine what the name refers to.

Presenting a definition of the term name and one of the term proper name raises the question
what other names there are besides proper names. Common names (also: appellatives) are
another kind of name. A common name is used for a class of entities or the entities of the
class, for which only point (1) of the definition of proper names is valid. According to van
Langendonck, the referent of a common name must actually comply to the properties required
by the name [Lan07, 90].

Before a reader can resolve the referent of a name, she needs to be aware of the relation
between name and referent, as in the following example.

Sample 2.1 If you like C, we think you will like the Java programming language. ([GJSB05,
xxv], emphases mine)

8

2.3 Direct Anaphora

In the example, the name C and the phrase the Java programming language4 are deictic because
they refer to the two well-known programming languages that have not been introduced in the
text prior to the example. It is, however, possible to introduce new names before use in a text
so that subsequent uses can be regarded as establishing an anaphoric relation (see [Lan07, 182],
[Mit02, 8]).

2.3 Direct Anaphora

While the meaning of proper names is detached from what they refer to, the meaning of a phrase
used anaphorically can be tightly connected to the referent of that phrase, e.g. in the case of
definite descriptions introduced in section 2.3.3. Among the typical classifications of kinds
of anaphora is the division into direct and indirect anaphora. Schwarz-Friesel characterizes
direct anaphora as follows. The most important function of an anaphor is to refer back to an
antecedent in the previous text in order to draw its meaning from the relation to it. Anaphor and
antecedent can be co-referential (i.e. refer to the exact same referent) and anaphors can maintain
the topic of the text (thematization) or shift it by introducing new information (rhematization).
Understanding anaphors is a cognitive process [Sch00, 64f.]. If both anaphor and its antecedent
are given in the text, the anaphor is called direct anaphor and its relation to the antecedent is
called direct anaphora. If the referent of the anaphor is not given in the text, but closely related
to a so-called anchor which is given in the text, the anaphor is an indirect anaphor; the relation
between indirect anaphor and its anchor is called indirect anaphora (see below). Direct and
indirect anaphora do not form a dichotomy, though. Schwarz-Friesel showed instead that they
are two extremes of a gradual concept of anaphora. It is, however, true for both direct and
indirect anaphora that "one of the properties and advantages of anaphora is its ability to reduce
the amount of information to be presented via abbreviated linguistic forms" [Mit02, 12].

Schwarz-Friesel highlights what she calls canonical conditions for the relation between anaphor
and antecedent, i.e. prototypical rules that will not be met by exceptional cases: (1) that gen-
der and number of anaphor and antecedent agree, (2) anaphor and antecedent are semantically
equivalent or at least compatible and (3) anaphor and antecedent are reasonably close so that
continuity of the textual reference is maintained [Sch00, 59ff.].

Pronominal anaphora and zero anaphora are kinds of direct anaphora and the linguistic forms
used to realize them occur in programming languages as well (see chapter 4). Definite descrip-
tions can also be used as direct anaphors and could potentially be useful in programming. The
following sections contain brief outlines of all three kinds.

2.3.1 Pronominal anaphora

The use of pronouns like he, her, it, himself as anaphors is the most common one in introductory
discussions of anaphora. An example is given below5.

4Use of this phrase cannot be replaced by the proper name Java for the latter can be confused with the island named
Java, but also with the Java platform that includes the Java Virtual Machine (JVM) for the instruction set of which
source code of the Java programming language is typically compiled.

5I added subscripted numbers in the example to express that all phrases indexed with the same number share a
referent.

9

2 Reference in Natural Languages

Text

TWM

Rosemary Simpson her

≪node≫
ROSEMARY SIMPSON

antecedent

direct anaphora

anaphor

referent

reference

referent

reference

Figure 2.1: Relations in text and text-world model for sample 2.2

Sample 2.2 Rosemary Simpson1 worked hard, on a very tight schedule2, to create the index3.
We4 got into the act5 at the last minute6, however; blame us4 and not her1 for any jokes7 you8

may find hidden therein3. ([GJSB05, xxv], emphases mine)

The antecedent of her is clearly Rosemary Simpson because in this sample the referent of this
name is the only referent representing a singular female person. Figure 2.1 depicts the direct
anaphora relation between her and Rosemary Simpson. The figure illustrates that anaphora is a
relation within a text contrary to reference that connects phrases of the text to nodes in a text-
world model (TWM) constructed by the reader (see below). The co-referentiality of antecedent
and anchor becomes clear as well. Note also that in the sample text we and you are deictic,
but therein refers to the index which itself is actually an indirect anaphor that can be resolved
without the presence of an antecedent because the previous text concerns the authoring of the
specification.

2.3.2 Ellipsis

In certain syntactical positions an item can be removed from a sentence without hampering
understanding of the sentence. The resulting ellipsis (depicted as ∅) is also called zero anaphor
due to the fact that a plausible interpretation of the sentence is constructed by filling the empty
position with an antecedent (see [Mit02, 12]). Ellipsis can, however, also be used deictically
(see [HH76, 144]). Among the items that can be removed from a sentence are pronouns:

Sample 2.3 If an eligible \ is not followed by u, then it is treated as a RawInputCharacter and
∅ remains part of the escaped Unicode stream. ([GJSB05, 15], ∅ mine)

Zero pronouns do not work in all syntactical positions, though (the asterisk in front of the sen-
tence marks it as invalid), as can be seen from a modified version of the last sample:

Sample 2.4 *If an eligible \ is not followed by u, then ∅ is treated as a RawInputCharacter and
∅ remains part of the escaped Unicode stream.

10

2.4 Cognitive Foundations

2.3.3 Definite descriptions

Definite descriptions describe a referent. The description typically introduces new information
on the referent that has not yet been given in the text [Mit02, 10]. Synonyms can be used in
definite descriptions, as in the following example.

Sample 2.5 If the method is an instance method, it locks the monitor associated with the instance1

for which it was invoked (that is, the object1 that will be known as this during execution of the
body of the method). ([GJSB05, 554], emphases mine, monospacing in original)

The terms instance and object are synonymous in object-oriented programming, thus the object
can be used to co-refer to its antecedent the instance6.

Besides synonyms, hyponyms and hyperonyms can be used in anaphoric definite descriptions
– i.e. sub- or super-ordinate terms. It shall also be noted that definite descriptions can be more
complex i.e. can involve quantities and attributes as in e.g. the five green objects. [Hen08] and
[Sta09] included these features in their implementations but I will not do so.

The remainder of this chapter is mainly based on the work of Monika Schwarz-Friesel:
[Sch00]7. While [Mit02], [Cla75] and [HH76] were also considered, Schwarz-Friesel’s work
was more useful due to its cognitive and process-oriented perspective and its complex analysis
of indirect anaphora8. The next section will lay the cognitive groundwork for the introduction
to indirect anaphora in the subsequent section.

2.4 Cognitive Foundations

Cognitive science is an interdisciplinary field researching the human mind. Its subfield cognitive
linguistics deals with models of language processing in the brain (among other things). [Sch00]
explains how humans use their knowledge to process anaphora. Her explanations are based on
models of how knowledge is structured in the mind and how it is activated so it can be accessed
efficiently. These models will be summarized in the coming subsections.

Future Work 2.2 (Include direct anaphora, based on Schwarz-Friesel’s model) Schwarz-
Friesel’s model explains both the understanding of direct and indirect anaphora. As part of this
work I will ignore the parts on direct anaphora and only use the parts on indirect anaphora. It
did, however, become clear at a later stage of my work that it is necessary to implement direct
anaphora along with indirect anaphora.

6The antecedent the instance is actually referring as well, as is signalled by the definite article. It may be regarded
an indirect anaphor anchored in the indefinite noun phrase an instance method.

7 Some aspects of [Sch00] are summarized in [SF07].
8There are also works from computational linguistics that deal with indirect anaphora (see [PMMH04], [FBP05]).

These work are, however, based on using annotated text corpora or the web to gather the semantic and conceptual
information required to resolve indirect anaphora. At the current stage of my work, this renders these works
irrelevant, because the source code provides normative semantic and conceptual information in Java.

11

2 Reference in Natural Languages

2.4.1 Mental representations of knowledge

So called modular theories assert that the mental lexicon contains semantic entries and is sepa-
rated from common sense or encyclopedic knowledge maintained by another mental module as
part of conceptual schemata, although both are connected and interact [Sch00, 32], even overlap
[Sch00, 33]. Modular theories propose that the mental lexicon appears as a network in long-term
memory (LTM) that connects words via semantic relations (e.g. synonymy, hyperonymy, and
meronymy, the latter of which will be explained later on). The entries of the lexicon describe
the core meaning of a word [Sch00, 32]. The lexical meaning of a word is underspecified and
independent from context [Sch00, 38], but language-specific [Sch00, 32].

Conceptual schemata are described as complex knowledge structures in long-term memory
that describe a typical instance of a subject or process; they are made up of concepts that are
contained in schemata as variables. Variables can have a default value and can be assigned a
specific value in the process of comprehension or trigger cognitive strategies if the situation
encountered does not fit the conceptual schema [Sch00, 34]. Conceptual schemata can be de-
scribed as language-independent [Sch00, 32] and they are context-dependent i.e. parts of their
contents may be relevant in some situations, but irrelevant in others [Sch00, 38].

Schwarz-Friesel briefly outlines two forms of conceptual schemata: frames and scripts [Sch00,
34f.]. While she highlights that frames detail typical components of objects of a certain class,
Stillings et al. give a definition from artificial intelligence that encompasses all kinds of at-
tributes, not only components: "A frame is a collection of slots and slot fillers that describe a
stereotypical item. A frame has slots to capture different aspects of what is being represented.
The filler that goes into a slot can be an actual value, a default value, an attached procedure,
or even another frame (that is, the name of or a pointer to another frame)." ([SWC+95, 159],
emphasis in original). A script, Stillings et al. write, "is an elaborate causal chain about a stereo-
typical event. It can be thought of as a kind of frame where the slots represent ingredient events
that are typically in a particular sequence." [SWC+95, 161]. Schwarz-Friesel mentions that
scripts are augmented with roles, properties, as well as pre- and post-conditions [Sch00, 35]9.

Future Work 2.3 (Depth of conceptual decomposition) Schwarz-Friesel hints at the fact that
it is not clear, how far conceptual decomposition goes [Sch00, 35]. A similar problem exists
in computer science, where fine-grained decomposition increases reuse at the cost of complex
dependencies. Computer science may find interesting insights from cognition research on this
topic.

For each lexicon entry there is a conceptual schema whose defaults act as the lexicon entry’s
conceptual scope. The lexicon entry and its conceptual scope form a so-called cognitive domain
[Sch00, 38].

2.4.2 Text-world models

Having an idea of the structure of knowledge in memory, the process of text comprehension
becomes of interest. Constructive theories of understanding assert that a model is created by

9It is no coincidence that frames and scripts resemble similar concepts in computer science. It shows instead the
influence of computer science that is part of the interdisciplinary field of cognitive science and thus affects the
models made up in the field.

12

2.4 Cognitive Foundations

the reader while receiving a text. The model is used to explain why it is possible to understand
fictional or abstract issues as well as to talk about real-world objects that ceased to exist: the
reader adds them to her model even if they do not exist for real. Schwarz-Friesel calls such a
model text-world model (TWM) and describes that it contains nodes that are conceptual repre-
sentations of the objects mentioned in the text from which the model was constructed [Sch00,
41]. To describe the construction of the nodes of a TWM, three-tier semantics are well suited.
"Three-tier semantics distinguish amodal concepts, language-specific lexical meanings and cur-
rent meanings determined by context" [Sch08, 64, translation mine]. The current meanings are
represented by the nodes of the TWM. These nodes are not mere copies of lexicon entries but
have been adapted based on existing information in the TWM, the lexicon entries and concep-
tual schemata (see [Sch08, 189]). By separating nodes in the TWM from lexical-semantic and
conceptual knowledge it becomes possible to model e.g. a text about two different trees without
needing to create a sub-concept tree for each tree talked about because each tree has a node in
the TWM and these nodes are derived from the concept of a tree. Through a process called
referentialization the reader resolves the references in the text i.e. new nodes will be created
in the TWM that act as referents, or existing nodes will be selected to serve as referents. Ref-
erentialization is part of the elaboration of the propositions that are the semantic content of a
text. Elaboration integrates conceptual knowledge from the reader’s memory into the TWM
by means of cognitive strategies. Note that the initial TWM is described as being made up of
propositions contained in the text and then elaborated instead of strictly distinguishing proposi-
tions and TWM as is done in other theories (see [Sch08, 197]). Because nodes in the TWM are
derived from entries in the mental lexicon they have a cognitive domain as well.

Future Work 2.4 (Instantiation of nodes and specification) The instantiation of nodes in the
TWM described above and the off-line specification of nodes – i.e. turning a node into a more
specific concept when further information concerning the referent is read from the text – is
described in the literature and will become more relevant to more complex uses of anaphora.
[Sch08, 64f.,189f.] may be good starting points; it may actually be a good idea to read the entire
book (for me too, I found it quite late during my work when my reading time was up already).

2.4.3 Focus and activity

During referentialization, mental processes work on the contents of short-term memory (STM).
Since semantic and conceptual knowledge is stored in LTM, knowledge must be chosen and
transferred from LTM to STM. A selection is necessary because of the limited capacity of the
STM and is based on processes managing focus and activity, of which the following ones can be
distinguished (see [Sch00, 46], [Sch00, 137ff.] and [Sch08, 199]).

Gaining focus When a phrase is read, its node in the TWM is activated or re-activated (see
below) and gains focus, i.e. is at the center of attention in STM.

Losing focus When the next phrase is read, the node of the previous phrase loses focus and
the node of the new phrase gains it. The node of the previous phrase remains active in
STM.

13

2 Reference in Natural Languages

Activation The node of a phrase that is activated is also added to the TWM. Indefinite noun
phrases, proper names, combinations of both and pronouns cause activation (see [Sch00,
70f.]).

Semi-Activation All nodes that are elements of a certain cognitive domain are semi-activated
in LTM when one of the nodes that is an element of the cognitive domain is activated.

Re-Activation A definite noun phrase causes re-activation. This means that (a) its node has
been inactive in LTM and becomes active in STM, and/or (b) the node of the phrase refers
to an element of a semi-active conceptual schema in LTM that will in turn be activated in
STM.

De-Activation A node in LTM becomes inactive when the node that caused its latest (re-
)activation or semi-activation is removed from STM. This typically happens two sentences
after the phrase referring to the node had been read. The node can be re-activated later.

Now that mental representations and activation have been introduced in an abstract fashion, they
will be exemplified during the discussion of forms of indirect anaphora.

2.5 Indirect Anaphora

In contrast to direct anaphora, the initial item involved in indirect anaphora is not called an-
tecedent but anchor. Indirect anaphora typically has the following features.

Anchor instead of antecedent "The previous text does not contain an explicit antecedent
but rather an [...] anchor, that is essential for the interpretation of the indirect anaphor."
[Sch00, 50, translation mine]

Conceptual relation "The referents of anchor and indirect anaphor do not stand in a co-
reference relation but in another close, conceptual relation." [Sch00, 50, translation mine]

Constructive interpretation "Interpretation of indirect anaphors includes constructive acti-
vation of knowledge on the part of the recipient instead of a mere process of searching
and matching." [Sch00, 50, translation mine]

No demonstratives or pronouns Demonstratives and pronouns can only in rare cases be
used as indirect anaphors. [Sch00, 50]

According to Schwarz-Friesel, indirect anaphora can be seen as a form of referential underspec-
ification that is driven by the writer’s anticipation of the reader’s knowledge that he assumes
will be used by the reader to elaborate the TWM to overcome the underspecification [Sch00,
81]. Referential underspecification is to be distinguished from referential ambiguity in that in
both cases the text lacks information required to establish a reference but only the latter leads to
ambiguity because even context, semantic and common sense knowledge do not allow a single

14

2.5 Indirect Anaphora

most likely referent to be identified (see [Sch00, 82]). Underspecification may hinder referen-
tialization, if the reader does not possess the knowledge anticipated by the writer. It is, however,
frequently10 used because language is used economically [Sch00, 83].

Future Work 2.5 (Research on indirect anaphors in technical texts) It would be interesting
to know how frequent indirect anaphors are in corpora containing technical texts only. Looking
for samples of indirect anaphora within the Java language specification gave me the idea that
a lot of phrases were fully specified. While this evidence is anecdotal, it would be worth a
detailed examination: Schwarz-Friesel reports on an experiment of her in which 40 % of the
subjects found full specifications superfluous while the corresponding underspecifications were
not deemed inappropriate [Sch00, 79f.]. The experiment seems to be based on non-technical
texts, though. It would hence be interesting to find existing research on this matter or (1) analyze
a corpus of technical texts for occurrences of indirect anaphora and (2) conduct an experiment
to show under what circumstances a subject deems full specification superfluous respectively
deems underspecification inappropriate.

Schwarz-Friesel provides a classification of indirect anaphora based on the anchoring process
used i.e. based on the process used to establish the relation between indirect anaphor and anchor.
I will exemplify this classification in the following sections.

2.5.1 Anchoring based on thematic roles

Indirect anaphora can be based on thematic roles (see [Sch00, 99ff.]). Thematic roles are used
to classify the semantics of the arguments of a verb (verb arguments are identified as part of
syntactic analysis). In the case of this kind of indirect anaphora, the indirect anaphor (IA) fills
a thematic role (here: PATIENT or INSTRUMENT) of a previously mentioned anchor (O), as can be
seen in the example below.

Sample 2.6 If the method m is synchronized, then . . .anobjectPATIENT must
::
be

::::::
locked

O
before the

transfer of control. No further progress can be made until the current thread can obtain the
lockINSTRUMENT,IA. ([GJSB05, 478], markup mine)

Figure 2.2 illustrates11 the relations in the text and text-world model of the sample that is now
discussed. The figure contains the three phrases relevant for the interpretation of the indirect
anaphor the lock, their nodes in the TWM as well as the lexicon entry related to the node of the
verb phrase to lock. All other lexicon entries are omitted. Note that this time reference relations
are not named but simply shown as dashed arrows.

In the second sentence of the text sample, the definite noun phrase the lock acts as indirect
anaphor because it is marked with the definite article the signalling that it is known although it

10Schwarz-Friesel actually quotes studies based on corpora of Swedish and English texts that revealed that about 60
% of definite noun phrases have no explicit antecedent (see [Sch00, 79]).

11 The figure is an illustration in the sense that depicts entities of a theory, and that I do not yet know how text-
world models, lexicon entries (and in later illustrations) conceptual schemata are commonly depicted in cognitive
linguistics (it may be that there is no consent on their depiction). The illustration is based on the graphical
elements of the Unified Modeling Language, but does not adhere to the syntax and semantics of UML.

15

2 Reference in Natural Languages

Text

TWM

Memory

an object to lock the lock

≪node≫
OBJECT

≪node≫
TO LOCK

≪node≫
LOCK

≪lexicon entry≫
TO LOCK

default AGENT: an ACTOR
default PATIENT: an OBJECT
default INSTRUMENT: a LOCK

anchor

indirect anaphora

anaphor

INSTRUMENT
PATIENT

Figure 2.2: Relations in text and text-world model for sample 2.6

has not been mentioned before12. The other definite noun phrases of the sample are no examples
of indirect anaphors based on verb semantics only13. In the case of to lock as used in the first
sentence, three thematic roles can be identified according to the classification used by Saeed
[Sae03, 149f.]: AGENT, PATIENT, INSTRUMENT (who locks something, what is locked, the
lock used). The AGENT role is not specified in the text, but a default is contained in the lexicon
entry related to the node of to lock in the TWM. The phrase an object takes the PATIENT role
– it is affected by the locking and moreover modified: after the locking it will be locked. The
INSTRUMENT role is taken by the lock in the second sentence because it fits the role well:
locks are used to lock things. The second sentence contains another verb (obtain) that has two
thematic roles that are both taken by phrases of the second sentence even though no anaphora
occurs related to this verb 14,15.

Not in all cases is the thematic role taken by an indirect anaphor as specific as in the example
just discussed. Consider another sample.

Sample 2.7 Otherwise, . . .the.value . .1PATIENT(1) :
is

::::::
added

O
to . . .thevalue. . .of. . . .the.variablePATIENT(2)

and the sumPATIENT(3),IA is stored back into the variable. ([GJSB05, 486], markup mine)
12Had it been introduced via the indefinite noun phrase a lock before, the lock would be a direct anaphor because it

would co-refer to the antecedent a lock.
13(1) the method m is a direct anaphor that refers to an indefinite noun phrase of the previous sentence "A method m

in some class S has been identified as the one to be invoked." [GJSB05, 477]. (2) the transfer of control is a rather
direct anaphor that refers to the previous sentence "If the method m is not synchronized, control is transferred to
the body of the method m to be invoked." [GJSB05, 478]. (3) the current thread is an indirect anaphor that can
be resolved using inference only (see below) since the term is not introduced formally.

14The AGENT role is taken by the current thread and the lock takes the THEME role of obtain besides the INSTRU-
MENT role of lock that it already has. The THEME role is taken by entities that are affected but not modified by
the corresponding verb.

15This example also shows the cohesive force of indirect anaphora: the verb-semantical relationship between to lock
and the lock spans the two sentences, turning them into a coherent chunk of text.

16

2.5 Indirect Anaphora

Text

TWM

Memory

an if-then statement the expression

≪node≫
IF-THEN STATEMENT

≪node≫
EXPRESSION

≪lexicon entry≫
IF-THEN STATEMENT

default part: an EXPRESSION
default part: a STATEMENT

anchor

indirect anaphora

anaphor

meronymy

whole part

Figure 2.3: Relations in text and text-world model for sample 2.8

The indirect anaphor the sum takes the 3rd PATIENT16 role of the verb add that appears in the
verb phrase is added in the first sentence. This case is different from the first one, in that not
only knowledge from the verb’s semantic entry in the mental lexicon and the lexicon entry of the
indirect anaphor are involved in the resolution of the indirect anaphora. The verb to add has a
number of meanings: one may add a tree to a garden, one may add a final remark in a discussion
to have the last word or one may add numbers during a calculation. The last meaning is used in
the give example, but that meaning of to add needs to be invoked firstly to make the sentence
sound17. The 1st and 2nd PATIENT roles the value 1 and the value of the variable together
with is added invoke a conceptual schema ARITHMETIC ADDITION that has defaults for the
two given addends and a sum. The default for SUM is replaced by the sum, when the reader
proceeded up to its mention in the text. The anchor in this example is thus found due to the
conceptual scope of its node in the TWM. I.e. indirect anaphora based on thematic roles may
not only involve semantic knowledge but also conceptual knowledge.

2.5.2 Meronymy-based anchoring

Not only thematic roles of verbs are modeled as part of the mental lexicon, the lexicon also con-
tains information about the relations between nouns. Hyperonymy has already been described as
a nominal-semantic relation that can be used as the basis for direct anaphora on page 11. While in
the case of hyperonymy identity of reference leads to the categorization of the anaphora as direct
anaphora, identity of reference is not given for another nominal-semantic relation: meronymy
(see [Sch00, 104ff.]). Meronymy is the name used for part-whole- and similar relations, as in

16It becomes obvious here that generic models of thematic roles have their limitations: it is hard to classify roles
involved in abstract processes. From a programming perspective it is also relevant that at least Saeed does not list
a role for the outcome of an action that could be used for creative processes or calculations.

17*Otherwise, the pine tree is added to the garden and the sum ... would have been invalid because sums have
nothing to do with gardening.

17

2 Reference in Natural Languages

the following example.

Sample 2.8
:::
An

::::::
if-then

:::::::::
statement

O(1)
is executed by first evaluating

:::::::::::::
the Expression

IA(1),O(2)
. If

the resultIA(2) is of type Boolean, it is subject to unboxing conversion (§5.1.8). ([GJSB05, 372],
markup mine)

The text prior to the extracted sample contained a syntax definition that made clear that an if-
then statement consists, among other parts, of an expression18. It is also expected that the reader
knows that an expression is evaluated, yielding a value that is the result of the evaluation and is,
like all other values in Java, typed. Theoretical entities involved when a reader reads the sample
are illustrated in figure 2.8. A reader who encounters the given sample can see from its indefinite
article, that the noun phrase an if-then statement is a new entity referred to by the text and a new
node needs to be constructed in the TWM, which acts as the referent of the phrase. The lexicon
entry associated to the newly created node contains defaults for the parts of an if-then statement,
among them an expression. The definite article of the Expression in turn signals the accessibility
of the referred item to the user even though no corresponding node exists in the TWM yet.
Since no expression has been introduced before, a new node EXPRESSION is created that is
the referent of the Expression. The node IF-THEN STATEMENT is active in the TWM and its
associated lexicon entry has a default for an EXPRESSION which is now replaced by the newly
created EXPRESSION node taking a meronymic relation to the IF-THEN STATEMENT. This
relation in the TWM reflects the indirect anaphora relation that is expressed in the text. Similar
to the anchoring just described, the Expression acts as the anchor of the indirect anaphor the
result in the following sentence.

It shall be noted that it would also be possible to eliminate this kind of anaphora, e.g. in the
case of the initial sentence of the sample by rewriting it to "An if-then statement is executed
by first evaluating its Expression." making the part-of relationship explicit in the text instead of
deriving it from the lexicon entry19.

Schwarz-Friesel [Sch00, 108f.] differentiates types of meronymy and gives an example that
shows that meronymy is often intransitive. She distinguishes relations between an object and its
constitutive parts, an object and its materials, an object and portions of it, sets and their sub-sets
and others but points out that loose association does not trigger meronymic anchoring.

The above example is a case of intransitive meronymy: removing the phrase by first evaluating
the Expression to apply underspecification makes it hard to understand the connection between
an if-then statement and the result because the indirect anaphora cannot be established and the
two sentences do not form a coherent whole.

2.5.3 Schema-based anchoring

There can be cases in which the entry in the mental lexicon that a node of an anchor is based
on is not sufficient to establish a relation between the indirect anaphor and the anchor. If the
conceptual schema that acts as conceptual scope of the lexicon entry can establish such a relation,

18In the original text, expression appeared capitalized and italicized to highlight that the word refers to the preceding
grammar definition.

19This form is actually used frequently in the Java language specification.

18

2.5 Indirect Anaphora

Text

TWM

Memory

the verification step the verifier

≪node≫
VERIFICATION STEP

≪node≫
VERIFIER

≪lexicon entry≫
VERIFICATION STEP

≪lexicon entry≫
VERIFIER

≪script≫
VERIFICATION OF CLASS FILES

default role: a VERIFIER
1. check class file syntax
2. VERIFIER checks non-code semantics
3. VERIFIER checks code attribute
4. checks during code execution

anchor

indirect anaphora

anaphor

involved in

Figure 2.4: Relations in text and text-world model for sample 2.9

this is a case of schema-based anchoring (see [Sch00, 111ff.]). The following sample will be
used to illustrate this kind of indirect anaphora.

Sample 2.9 It is instructive to consider what might happen without
:::
the

::::::::::
verification

::::
step
O

: the

program might run and print:
s
This demonstrates that without the verifierIA the type system could be defeated by linking incon-
sistent binary files ([GJSB05, 342], markup mine)

Unlike previous samples, the discussion of this sample will initially ignore the text surrounding
the sample in the Java language specification. The theoretical entities involved when a reader is
reading the sample are illustrated in figure 2.4. The entries of the mental lexicon and the contents
of the script shown in the figure are at this point considered given.

Based on above simplifying assumptions, the resolution of the indirect anaphor the verifier
can be explained as follows. Reading the definite noun phrase the verification step creates a
new node and semi-activates the script VERIFICATION OF CLASS FILES20. When the phrase
the verifier is read, a new node VERIFIER is created. Because the script has a default role
for a VERIFIER, an involved in relation is created between the VERIFICATION STEP and the
VERIFIER node in the TWM parallelling the indirect anaphora relation. Note that the verifier
20The fact that determiner the signals that a node already exists is treated later.

19

2 Reference in Natural Languages

is not a part of the verification step and is therefore not part of the latter’s semantics that may be
stored in the mental lexicon.

The contents of the script VERIFICATION OF CLASS FILES has been considered given but
will now be discussed. Each script must have been created somehow. While I did not read the
literature to find out about models of how concepts and conceptual schemata are created, I will
for now assume that scripts are created by reading texts describing processes. The Java language
specification itself does not describe the process of class file verification. The script given is a
superficial outline of the relevant section of the Java Virtual Machine (JVM) specification (see
[LY99, 141ff.]). I.e. the assumption underlying the given script is that the reader modeled in
figure 2.4 read the JVM specification before reading the Java language specification and recalls
those details from the JVM specification that are given in the script.

While it may also be possible that a reader has a more elaborate script on the VERIFICATION
OF CLASS FILES, there may also be readers who do not know such a script at all. Can they be
able to anchor the indirect anaphor? Even a reader who does not know what verification means
can create a minimal script by applying her (implicit) knowledge of morphology to the words
verification and verifier. The reader may have a more vague idea than put forward, but he is
likely able to identify that verification and verifier are related to the verb to verify and that the
suffix -ation in verification expresses a process and the suffix -er in verifier expresses a human
or abstract actor performing a verification. Based on such potentially unconscious analysis the
reader would be able to create an ad-hoc script that may be named VERIFICATION and contain
nothing but a VERIFIER in a role default and is used to anchor the anaphor.

Future Work 2.6 (Creation of concepts and conceptual schemata) The literature shall be
searched for models describing the creation of concepts and conceptual schemata during the
reading of a text. For the idea of three-tier semantics it is especially important how nodes in
the TWM are turned into concepts and conceptual schemata - i.e. become part of the reader’s
knowledge, so they can be incorporated in the understanding of other texts.

Not only the contents of the script can be objected, the form of the entries in the mental lexicon
as shown in figure 2.4 can be as well. That the VERIFICATION STEP node is created from
a single lexicon entry for VERIFICATION STEP is plausible if that is e.g. a technical term
repeatedly used in the literature. That is, however, not the case in this instance. Referring to a
verification step does instead suggest that verification is part of a process. The anaphoric use of
the verification step does thus lead to the question how nodes in the TWM can be constructed
based on more than one lexicon entry. Answering this question requires further reading.

Future Work 2.7 (Involvement of entries from the mental lexicon) My reading was yet in-
sufficient for detailing the grain of lexicon entries as well as whether and if so, how, multiple
lexicon entries can be involved in the creation or elaboration of a node in the TWM.

The phrase the verification step is relevant for another aspect as well: the sample was quoted
out of context and I did so far ignore the fact that the determiner the in the verification step
signals that a node suitable for this phrase is already present in the TWM. Hence, that node must
have been introduced in the pre-text or an anchor must have been available in the pre-text the
beginning of which is shown in the following sample.

20

2.5 Indirect Anaphora

Sample 2.10 This version of class Super is not a subclass of Hyper. If we then run the existing
binaries of Hyper and Test with the new version of Super, then a VerifyError is thrown at link
time. The verifier objects [...]. ([GJSB05, 342], markup mine)

It becomes clear that the verification step itself is a schema-based indirect anaphor with link time
being the corresponding anchor - verification is one step in linking (see [GJSB05, 310]). The
pre-text also contains the initial mention of the verifier in the entire Java language specification,
hence that one is the actual schema-based indirect anaphor if the entire text is read sequentially.
The subsequent mention of the verifier in sample 2.9 is, when the pre-text is read as well, only
a direct anaphor referring again to an already existing and active node in the TWM. Which
entities are involved in the creation of the node for the verifier in the pre-text is less clear than in
sample 2.9 though, because the pre-text also mentions a VerifyError besides link time, giving two
potential anchors that trigger the semi-activation of the script containing a default VERIFIER
that is replaced by the referent of the indirect anaphor the verifier. This exemplifies how hard
it was to find clear examples for schema-based anchoring for most potential samples involved
meronymy, verb-semantical roles or inference.

While the discussion of samples 2.9 and 2.10 exemplified that an indirect anaphor is a context-
sensitive and reader-related function that a phrase can have, the discussion revealed that multiple
phrases can be suitable anchors for an indirect anaphor and that further reading is required.

In sample 2.9, the definite noun phrase the type system has not yet been discussed. It appears to
be less connected to CLASS VERIFICATION and seems to be an example of complex anaphora
that will not yet be treated here.

Future Work 2.8 (Cover complex anaphors) Schwarz-Friesel worked on complex anaphors
that have been mentioned in [Sch00, 129ff.] and [Sch08, 199ff.] and have been the subject of
a research project whose artifacts are listed at http://www.coling-uni-jena.de/ig-wiki/index.php/
Prof._Dr._Monika_Schwarz-Friesel/Komplextex . Complex anaphora is a form of anaphora that
allows a single anaphor refer to "a complex linguistic entity, which means that it consists of
(at least) a clause" [CKSF07, 83] and is subject to further constraints. The ability to refer to
complex referents makes this kind of anaphora an interesting candidate for another transfer to
programming languages.

2.5.4 Inference-based anchoring

Schwarz-Friesel defines inference as a process that activates conceptual knowledge from LTM
or constructs mental representations required for the TWM and thereby exceeds what can be
done solely based on semantic knowledge (see [Sch00, 89]). Inference of indirect anaphora is
limited by three factors: "the semantic representation of the definite phrase being used as indirect
anaphor, the anchor and the existing TWM" [Sch00, 90, translation mine].

Hence, inference-based indirect anaphora (see [Sch00, 114ff.]) are those kinds of anaphora
for which not only a default from a conceptual schema needs to be replaced in order to establish
them. Schwarz-Friesel distinguishes two kinds of inference-based anchoring21 (see [Sch00,
89]):

21This is not meant to say that there are no boundary cases.

21

2 Reference in Natural Languages

1. Activative inference: Conceptual schemata are activated in order to disambiguate, specify
or elaborate the semantics of a text.

2. Constructive inference: Conceptual schemata are activated in order to create new mental
representations (e.g. concepts, schemata, nodes in the TWM) that are used to construct
the TWM.

Since inference-based anaphors depend upon the reader’s knowledge to an even greater extent
than schema-based anaphors do, the discussion of an example is even more hypothetical (and
superficial). Since the transfer of this form of indirect anaphora has not yet been started, this
section serves as a placeholder indicating that there is yet another form of indirect anaphora to
be considered. A detailed description will be worked out when an implementation is attempted.
Having said this, the following sample contains an inference-based indirect anaphor.

Sample 2.11 A program terminates all its activity and exits when one of two things happens:

• All the threads that are not daemon threads terminate.

•SomethreadACTOR ::::::
invokes

O
. . . .theexitmethod. . .ofclassRuntime . . .orclassSystemTHEME and

the exit operationCA is not forbidden by the security managerIA.

([GJSB05, 331], markup mine)

The last sentence is of interest here. It links the exit method to the classes that provide it. In con-
trast, the security manager has a definite article as well, but has not been introduced before. It is
anchored in the METHOD INVOCATION script which is the conceptual scope of invoke and its
ACTOR and THEME roles given in the text. Whether activative or constructive inference-based
anchoring happens depends on the knowledge of the reader. If the reader knows that a method
may upon invocation query the security manager to ensure that the invocation is permitted, ac-
tivative inference is possible. The verb phrase is not forbidden will then hint the reader at the
fact that METHODS CAN QUERY THE SECURITY MANAGER UPON INVOCATION TO
MAKE SURE THE INVOCATION IS VALID. Since the fact is known to the reader, it can be
integrated into the TWM to establish indirect anaphora between the anchor METHOD INVO-
CATION and the anaphor the security manager. It would be worth considering constructive
inference that is necessary when the reader does not possess the required knowledge. I know
too little about inference, however, to be able to provide a good description for this sample yet.
Besides that, there are a number of properties of the sample that complicate a description of the
inference: (1) the sample states a condition, (2) it includes a negation as well as (3) the complex
anaphor the exit operation that refers to a program terminates all its activity and exits and (4)
the propositional structure made up from the exit operation is not forbidden by the security man-
ager does already allow a TWM to be created that involves the security manager even though a
conceptual relation is still missing.

Future Work 2.9 (Further understanding of inference) Schwarz-Friesel’s treatment of infer-
ence does not yet allow for a straight implementation of inference-based anchoring. A number
of points need clarification. (1) The samples in [Sch00, 114ff.] are not discussed in such a detail

22

2.5 Indirect Anaphora

that would make clear all steps and conditionals of the inference process. [Sch00, 88ff.] pro-
vides references to further literature, though. Besides that, most of the samples seem to be cases
of constructive inference. (2) The relation of the concept of inference that Schwarz-Friesel uses
to the ones used in logic (i.e. deduction, induction and abduction) are unclear to me. They seem
to be relevant, though, because to interpret Schwarz-Friesel’s samples, information needs to be
assumed as in the case of induction or abduction. In this respect it would also be interesting to
find which forms of (logical) inference apply, since it seems less desirable to transfer means of
reference to programming languages that are uncertain (like induction and abduction can be).

2.5.5 Anchoring of indirect anaphors

The preceding discussion of samples described the referentialization of indirect anaphors, i.e.
how a referent of an indirect anaphor is found by establishing a relation between the indirect
anaphor and its anchor that is reflected by a relation in the TWM. It was however not detailed
how a suitable anchor is selected in the presence of multiple potential anchors. The following
two steps are given by Schwarz-Friesel to explain the selection of a suitable anchor from a
set of potential anchors. Schwarz-Friesel calls these steps cognitive strategies for they happen
automatically and unconsciously [Sch00, 135].

1. Identify a suitable anchor within the text, i.e. a textual item (the anchor) whose cognitive
domain has a placeholder for the referent of the definite noun phrase which is to function
as an indirect anaphor. [Sch00, 135] I integrate into this step textual factors that Schwarz-
Friesel details later, when she states that the search for a suitable anchor requires that
anchor and indirect anaphor are reasonably close to each other within the text and that
such a suitable anchor is typically22 determined by the following conditions (see [Sch00,
139ff.]).

a) Referential unambiguity: there may be more than one potential anchor for an indirect
anaphor but only one anchor can have a suitable referent for the indirect anaphor in
its cognitive domain.

b) Plausibility: the anchoring must be plausible on-line i.e. during comprehension of
the indirect anaphor. This is the case when a role in the anchor’s cognitive domain
can be set by a referent of the indirect anaphor ad hoc or using inference (see step
2. below that will actually perform what is only required to be possible by this
condition).

c) Involvement of focused theme: When the indirect anaphor is processed on-line, the
cognitive domain of the potential anchor must be part of the currently focused theme
in order to allow for a relation between anchor and indirect anaphor to be established
easily (it is not yet clear what a theme is, though, see future work item 2.10 below).
If the theme of the anchor is not currently focused because e.g. there is another
sentence with a different theme between anchor and indirect anaphor, the relation
will be hard to establish. Note future work item 2.10 below.

22i.e. the conditions may be incomplete or overly restrictive in exceptional cases

23

2 Reference in Natural Languages

2. "Establish the relation between indirect anaphor and the suitable anchor by either

a) searching the cognitive domain of the anchor for a semantic role that the indirect
anaphor can take23, or

b) searching the cognitive domain of the anchor for a conceptual role that the indirect
anaphor can take, or

c) if there is no role explicitly stored in the mental lexicon or concept memory, using
inference to create a role in the TWM that is taken by the indirect anaphor." [Sch00,
135, translation and footnote mine]

Schwarz-Friesel expresses that she takes a "(moderate) minimalist" position concerning
when to use text-semantic knowledge and when to use conceptual knowledge to resolve
anaphors and therefore supposes that referentialization is efficient and non-redundant a
process and hence later options will only be taken when no prior option allowed to estab-
lish a reference [Sch00, 22] (e.g. 2c will only be applied when 2a and 2b did not yield a
suitable anchor).

Future Work 2.10 (Details on thematic progression) In order to be able to detect changes in
the theme of a text between one sentence and another, it is necessary to have a good idea of
the representation of a sentence’s theme. Schwarz-Friesel discusses thematic progression in the
case of indirect anaphora [Sch00, 97]: she argues that rather a scalar than the existing binary
theory of information is necessary and that the latter classifies the topic of a sentence as either
given (a theme) or new (a rheme), even though indirect anaphors do continue the theme of the
anchor as well as introducing new referents (that function as rhemes upon introduction, but from
later points in the text are regarded as themes). Schwarz-Friesel also asserts that there may be
multiple themes that are gradually activated. While she points out that theme and rheme are dis-
tinguished by how easily they are reachable in memory [Sch00, 92], and that a theme is focused
[Sch00, 142] i.e. a rheme can only be activated, she does not detail how a theme or rheme is
represented. Instead, she describes them as "mental values of information that are assigned to
linguistic representations of varied complexity" [Sch00, 92, translation mine]. I.e. it remains
unclear what values of information and linguistic representations of varied complexity are and
how both are mapped onto each other. It seems likely that the granularity of themes determines
when a switch of theme occurs. If one assumes that conceptual schemata function as themes or
are at least related to themes, their granularity becomes relevant for thematic progression. Un-
fortunately, Schwarz-Friesel points out that it is unclear how fine-grained conceptual schemata
are (see [Sch00, 35]). I.e. in the extreme case of an all-encompassing scheme, a switch of theme
can never occur, in the other extreme of totally isolated minimal schemes, every new word would
bring a switch of theme. This shows that the idea of a theme needs further clarification to be
found in the literature in order to effectively determine the scope searched for potential anchors
of an indirect anaphor.

23The role can be a thematic role in the lexicon entry of a verb or a meronymic role in the lexicon entry of a noun

24

2.6 Summary

2.6 Summary

In this chapter, reference, anaphora, proper and common names have been defined and the need
to deal with deixis has been pointed out. A modular theory of mental representations of seman-
tics was introduced that distinguishes a mental lexicon and conceptual schemata and explains
their interconnections, even though the granularity of concepts is yet unclear. Three-tier seman-
tics were outlined that involve conceptual and semantic knowledge as well as a text-world model
and how readers elaborate this model. However, instantiation and specification of nodes of the
TWM is not yet fully covered. Additionally, focus and activity were described, that serve to ex-
plain the dynamic limitation of searches for antecedents. Anaphora was subclassified into direct
and indirect anaphora. The latter has been exemplified, but the part of Schwarz-Friesel’s model
treating direct anaphora has not yet been integrated here. Even though data on indirect anaphors
in technical texts is outstanding, four kinds of indirect anaphora were distinguished, based on
the knowledge involved in their resolution. The first kind is based on thematic roles, but may
involve additional conceptual knowledge. The second kind is based on (intransitive) meronymy
relations. In the discussion of the third, schema-based kind, the extent to which understanding
depends on the individual reader became an issue besides the need to cover the (ad-hoc) creation
of schemata and the involvement of more than one lexicon entry. Finally, indirect anaphors
based on activative and constructive inference have been distinguished, even though the latter
one could not be exemplified, since a detailed description of the inference process and its rela-
tion to logical inference it still to be found in the literature. Another form of anaphors (complex
anaphors) is yet to be treated. In the last section, an algorithm for selecting a single suitable
anchor from a set of potential anchors was reproduced that involves the economical selection of
the kind of anchoring to be applied. The algorithm includes thematic progression which is based
on focus and activity but requires further reading to clarify the representation and granularity of
theme and rheme.

25

3 The Relations Between Natural
Languages and Programming
Languages

Now that it is clear what indirect anaphora is, to prepare its transfer to the Java programming
language, the relations between natural languages and programming languages are considered.

3.1 Programming Languages Considered Languages

Three ways of relating natural languages and programming languages to each other can be iden-
tified ad hoc: (1) fragments of natural language are contained in source code of programming
languages as identifiers, (2) both are sub-concepts of the same superordinate concept of lan-
guage and (3) they may be metaphorically connected. Relation (1) will be discussed in section
4.1, (2) will not be disputed – it holds e.g. for Chomsky’s syntax-oriented definition of language
as "a set (finite or infinite) of sentences, each finite in length and constructed out of a finite set
of elements." [Cho57, 13]. Relation (3) will be elaborated in the following.

Through the course of the history of programming languages it has been remarked that there
are analogies between natural languages and programming languages (see [Zem66, 141] and
[Nau92, 26]). Carsten Busch treated the analogies between natural languages and programming
languages as metaphorical [Bus98, 164f.]: according to him, the word language that is part of
programming language had been transferred from the context of natural languages to the context
of what used to be called a coding system before; he asserts that through this transfer, the new
concept of a programming language was created and shaped. I am not yet convinced of this
hypothesis because it is not clear to me which concepts out of the context of natural language
had, during the 1950’ies not been available as part of the context of language in general thereby
making a metaphorical transfer necessary from the context of natural languages. Regardless
of whether or not this can be found for the past, it provides an option for the future and I
deem transferring indirect anaphora from natural languages to programming languages a way
to elaborate this metaphorical relation because indirect anaphora cannot be copied from English
to Java due to the grave structural differences. The transfer will thus include mapping (not
neccessarily syntactic) structures of natural language to structures of Java.

3.2 Naturalistic Programming Languages

If the notion of (natural) language being used as a metaphor for a coding system is taken to
the extreme, the coding system will look entirely like natural language. This can be seen as the

27

3 The Relations Between Natural Languages and Programming Languages

goal of natural-language programming i.e. programming in natural language. A more recent ap-
proach reaches closer: naturalistic programming languages. Breaking up the term naturalistic
programming language into its constituent parts, it unfolds into a programming language that
is naturalistic i.e. "derived from or closely imitating real life or nature" [Dic11a]. Instead of
departing from natural language, as in natural-language programming, this term departs from
programming languages and qualifies them as imitating real life, respectively its languages: nat-
ural languages. Lopes et al., who first used the term naturalistic programming, remind of the
fact that in programming languages "it should be possible to construct abstractions on top of a
relatively small number of primitive abstractions" and that "such primitive abstractions should
be inferred from wider ground of Linguistics" [LDLL03, 203]. They propose that such abstrac-
tions are the binding mechanisms used in natural language and that naturalistic programming
languages "take their direction from the structure and expressiveness of natural languages rather
than from the idealized models of traditional programming languages." [LDLL03, 203].

A note on the adjective natural that occurs quite often in writings on naturalistic program-
ming when it comes to justifying language design decisions: Jef Raskin mentioned in his book
"The Humane Interface", that the adjectives intuitive and natural, when used to describe user
interfaces, mean that something is known or easy to learn [Ras00, 150-1]. It may be true that a
particular feature taken from a natural language is known or easy to learn. However, for its im-
plementation in a programming language to be called natural, known, or easy to learn, it should
at least be outlined why the implementation of the feature matches its occurence in natural lan-
guage. This is necessary because not all implementations match the feature of natural language
they seek to implement, which is a problem in systems made for natural language programming.

Future Work 3.1 (Criticizing the concept of natural language) The Oxford Dictionary defines
the adjective natural as meaning "existing in or derived from nature; not made or caused by hu-
mankind" [Dic11b]. It could be asked to what extent languages used by humans are given
by nature respectively are shaped by humans themselves. Neurolinguists will provide evidence
showing that natural languages are shaped by our biology, but there may also be a lot of evidence
for the idea that natural langugage is an abstract construct of humans trying to understand it.
Criticizing the concept of natural language would mean to elaborate it, trying to gauge whether
it is more given or more made. I find it very likely that such criticism has been written already.
It could provide feedback for attempts to evaluate the naturalness of naturalistic programming.
The most extreme outcome of the criticism could be to use humane programming instead of
naturalistic programming – analogous to Raskin’s term humane interface.

3.3 Summary

This chapter briefly outlined the relations between natural languages and programming lan-
guages: that (1) fragments of natural language are contained in programming languages, (2) both
are sub-concepts of the same superordinate concept of language and (3) they may be metaphor-
ically connected. The metaphorical relation I consider hypothetical for the past but I will pursue
it in my own transfer. The transfer will be oriented towards naturalistic programming, even
though that term should be subject to criticism.

28

4 Reference in Java

After analyzing forms of reference in natural language and the relationship between natural
language and programming languages, reference in Java (see [GJSB05]) will be looked at in
order to see whether or not forms of anaphora are already possible in the Java. I will therefore use
words from chapter 2 as metaphors to put them in place of words used to describe reference in
Java and then analyze whether the metaphors and their Java-related context fit the requirements
that have been stated for the different kinds of reference in chapter 2.

Similar to the focus put forward in chapter 2, I will only regard local means of reference.
That means that in this chapter only forms of reference will be considered that occur within
the bodies of methods, constructors, static initializers and instance initializers in Java. I will
ignore references that can not typically be used without crossing the boundary of a file of source
code, e.g. inheritance, interface implementation, use of types and package names. Analogous to
the means of reference in natural languages treated in sections 2.1, 2.2 and 2.3, occurences of
names, deixis and zero anaphors in Java will be discussed in this chapter.

4.1 Names

Names in Java exemplify the first relation between natural language and programming languages
from section 3.1: natural language appearing in names used in programming languages.

According to the Java language specification, names are in Java used to refer to declarations
of e.g. classes, fields, methods and local variables and they can be either simple, consisting of a
single identifier, or qualified, consisting of multiple identifiers separated by dots [GJSB05, 113].
An identifier cannot include spaces, but underscores ("_"), dollar signs ("$"), letters and digits
[GJSB05, 19]. If no further assumptions about names are made, the names in a successfully
compilable Java program are proper names as per van Langendonck’s definition summarized in
section 2.2: they refer to a unique entity (a declaration), that is thereby highlighted within the
class of entities to which it belongs (e.g. field declarations) and the meaning of the name does
not determine what the name refers to (which is true since Java has no notion of meaning that
could be found in names1). Java compilers take this perspective with regard to names in the
programs that they compile.

It is trivial, but programs are of course not read by compilers only, but also by their authors
and other programmers. Programmers can take the perspective of the compiler and suppress
their knowledge of natural language when reading programs. They are, however encouraged to
give meaning to names used in Java programs and that meaning comes from natural language.
The following naming conventions were taken from the Java language specification.

1This is the case because the compiler does not parse the contents of the character strings used as identifiers. Instead,
the meaning of a name in Java is what the name refers to (see [GJSB05, 126ff.]).

29

4 Reference in Java

1. "Names of class types should be descriptive nouns or noun phrases, not overly long, in
mixed case with the first letter of each word capitalized." [GJSB05, 147]

2. "Method names should be verbs or verb phrases" [GJSB05, 149]

3. "Fields should have names that are nouns, noun phrases, or abbreviations for nouns."
[GJSB05, 150]

4. "Local variable and parameter names should be short, yet meaningful. They are often
short sequences of lowercase letters that are not words." [GJSB05, 151]

Nouns, noun phrases, verbs and verb phrases are distinguished in the syntax of natural languages
as parts of sentences and have a meaning in natural language. Using them as names in Java gives
them a second meaning that is only accessible to programmers, but not to compilers. This cre-
ates a gap in these names between the semantics of Java that both compiler and programmer
know and the semantics of natural language that are only accessible to the programmer. This
semantic gap makes it possible to write code whose contained names imply semantics that can-
not be ensured by the compiler. That is a drawback of the use of descriptive names from natural
language in Java (and other programming languages). Considering the fact that the natural-
language meaning of a Java name is, from the perspective of the programmer, connected to what
it refers to, one may want to categorize them as anaphoric because anaphors are semantically
related to their referent. Since this meaning is only available to programmers but not to com-
pilers, I am reluctant to categorizing Java names as anaphors, which may be a good application
of Consten’s gradual scale between deixis and anaphors (see page 8). This objection does of
course not apply to names that do not use full words as proposed in the naming convention for
local variables and parameters.

4.2 Deixis

Besides names, a lot of programming languages have keywords that lexically resemble pronouns
of natural language (see section 2.3.1)2. While names in Java can be used to refer to a variable
that holds a reference to an object at runtime, there are forms of deixis in Java and other pro-
gramming languages that directly refer to an object that does not appear in the source code,
namely this and super. These forms do neither funcation as direct anaphors, nor do they
function as indirect anaphors. The forms do not function as direct anaphors for Java has no
notion of gender and number in which the presumed anaphor and its antecedent could agree and
there is no antecedent in the text to which the presumed anaphor relates and could be close to (cf.
Schwarz-Friesel’s canonical conditions mentioned in section 2.3). The forms do not function as
indirect anaphors due to the lack of an anchor visible in the text and because these forms do
not convey meaning that could invoke a cognitive domain in order to establish a relation to the
cognitive domain of a potential anchor (cf. section 2.5).

Java’s keyword this can be used "in the body of an instance method, instance initializer
or constructor, or in the initializer of an instance variable of a class. [...] When used as a

2e.g. this in Java, self in Smalltalk, me in VisualBasic

30

4.3 Zero Anaphors

primary expression, the keyword this denotes a value that is a reference to the object for which
the instance method was invoked (§15.12), or to the object being constructed." [GJSB05, 421,
markup in original] It was stated above that this syntactical variant of this reflects the deictic
use of the English demonstrative pronoun this3. There is another syntactical variant involving
this in Java: "Any lexically enclosing instance can be referred to by explicitly qualifying
the keyword this. [...] The value of an expression of the form ClassName.this is the nth
lexically enclosing instance of this (§8.1.3)." [GJSB05, 422, markup in original] This variant
is similar to the use of this as a determiner in an NP4. While qualified this does in Java appear
after the class name used to qualify it, it is the other way around in English: this is used as a
determiner that precedes a noun in a noun phrase.

It can be concluded that the lexical resemblance between this and this is met by only par-
tially overlapping semantics. A flexible aspect of this that this does not cover is the choice of
potential referents: this is limited to referring to enclosing instances or the currently executing
object. Since the limited overlap does not make this natural in the sense laid out in section 3.2,
new forms of reference should be sought that are modeled after anaphors, i.e. that are related to
an antecedent or anchor in the text that can be freely positioned by the user of the programming
language as is the case with local variable declarations except for the fact that the antecedent or
anchor shall not be explicitly named5.

4.3 Zero Anaphors

Besides names and deixis, zero-anaphors can be found in Java: in a certain kind of method
invocation. Method invocation expressions typically specify the object upon which the method
is to be invoked. E.g. in this.foo() the primary expression this is evaluated at runtime
to retrieve the object upon which the method foo() is going to be invoked. It is common
to shorten this expression to foo() instead of this.foo(). This will lead the compiler to
search for a matching method declaration in an enclosing type declaration that is both visible
and accessible [GJSB05, 442]. Like in the case of natural language (see section 2.3.2), use of
zero-anaphora is syntactically restricted: it can only occur in the initial position of a complex
expression (e.g. in front of but not after foo() in foo().bar()). The fact that the members
of the enclosing type are searched is similar to how schema-based indirect anaphora is resolved
(see section 2.5.3). However, like in the case of the pseudo-variables mentioned above, the
antecedent is determined by the language specification and cannot be positioned in the method

3The deictic use of this applies e.g. when at a market, asking "What do you think about this?" while pointing at
the rhubarb offered. The anaphoric use, that was said to be impossible in Java, allows English to be used as in
the following example: "So, for example, when we list the ways in which an object can be created, we generally
do not include the ways in which the reflective API can accomplish this." [GJSB05, 6]. Such anaphors have also
been called discourse deixis.

4Such NPs can in English be both deictic and anaphoric. Deictic, e.g. when asking "What do you think about this
stalk?" when pointing at a stalk of rhubarb. Anaphoric as in the following example: "Over the past few years, the
JavaTM programming language has enjoyed unprecedented success. This success has brought a challenge [...]"
[GJSB05, xxvii, superscript in original]

5 I did not find a requirement of free positioning in definitions of anaphora in natural language but that does not
irritate since it is programming languages that introduced keywords that can be used as anaphors in natural
language but fixed the position of the antecedent.

31

4 Reference in Java

body but only be a member of an enclosing type.

4.4 Requirements for Indirect Anaphora in Java

Existing means of reference have been considered and none was identified that clearly results
from indirect anaphora. What then could make an indirect anaphor in Java? Schwarz-Friesel
identified features of indirect anaphora (see [Sch00, 118]), a number of theses features I deem
appropriate for indirect anaphora in Java as well:

domain-binding All forms of indirect anaphors are domain-bound: what they refer to is de-
termined by one or more cognitive domains.

strategies constitute referents The reference that connects a definite noun phrase func-
tioning as indirect anaphor to its referent is established by cognitive strategies in the text-
world model. These cognitive strategies set placeholders from the cognitive domain that
have been integrated into the TWM.

implicit coherence relation The cognitive strategies do not only constitute a referent, but
in the course of that also establish an implicit coherence relation between the indirect
anaphor and its anchor. This relation is expressed by the relation within the TWM between
the referents of indirect anaphor and anchor.

rhematic thematization Indirect anaphors continue given (thematic) information while in-
troducing new (rhematic) information at the same time.

Two further aspects follow from this chapter.

careful lexical resemblance Keywords used for indirect anaphors in programming languages
should not resemble words from natural language if their semantics are only partially
equivalent.

freely positioned anchor Programmers should be able to freely position anchors within ar-
eas of the source code. This implies that there is an explicit anchor in the text.

4.5 Summary

A comparison of means of reference in natural language and Java took place in this chapter.
It was found that from the perspective of a Java compiler, names in Java satisfy van Langen-
donck’s requirements for proper names as known in natural language. The naming conventions
of Java do, however, propose that names in Java be phrases of natural language, making them
anaphoric from the perspective of a programmer. This double function creates a semantic gap in
each Java name if it resembles words from natural language. This resemblance can potentially
confuse programmers. Moreover, it was found that Java supports deixis and zero anaphors. Be-
fore further forms of indirect anaphora are added to Java, Schwarz-Friesel’s features of indirect
anaphora have been given and extended by careful lexical resemblance of words from natural
language and free positioning of anchors.

32

5 Constructing a Metaphor

Selected means of reference in natural language and the Java programming language have been
introduced in chapters 2 and 4. It has been shown in chapter 3 that natural languages and
programming languages can be regarded as being metaphorically related. In this chapter I will
extend the metaphor of coding systems regarded as languages by introducing another metaphor
to source code: indirect anaphors (see section 2.5). The metaphor indirect anaphor will stand for
a new indirect means of reference in a modified version of Java that can be used within the bodies
of methods, constructors, instance initializers and static initializers. Based on the analyses from
the previous chapters, this metaphor will be developed in an abstract fashion in this chapter. The
subsequent chapter will detail specific forms of the metaphor. An implementation of what has
been laid out here and in chapter 6 will be described in chapter 7.

Busch did not only analyze the use of metaphors in programming and computing (see section
3.1) but reviewed definitions of metaphor as well. Based on his summary of informal definitions
of metaphor (see [Bus98, 10ff.]), I will transfer the phrases indirect anaphora, indirect anaphor
and anchor that are used within the context of natural language to the context of programming
languages, specifically Java. The dialect of Java created by the transfer I will call Jaaa to have
a name to refer to it1. Busch underlined that not only the two contexts involved in the transfer
are important for the metaphor, but that their interaction is equally relevant. Interaction means:
to develop the meaning of the metaphor in the new context, elements from the original context
must exist that can be mapped to elements in the target context [Bus98, 13ff.]. Developing a
metaphor can be seen as the process of initially copying a word and its conceptual schema from
one context to another and then rooting the copy of the conceptual schema in the new context.
The rooting may happen by replacing the slots in the copied schema with slots that can be
filled with elements from the new context2. To describe the interaction of the source and target
context, I will provide a comparison of potential contents of the conceptual schemata of indirect
anaphora in the contexts of natural language and programming language in the following3.
Each of the following sections includes a table summarizing the elements of the two contexts
compared in the section4.

1Only minimal effort was made to find this name.
2Busch provides a formalization of metaphor (see [Bus98, 59ff.]), but an informal definition is sufficient for this

work.
3Upon more detailed inspection than performed here, cases may be identified that let the comparison become

inappropriate. This will likely happen for the purpose of this chapter is not to prove a correct mapping between
the two contexts but to create a plausible interpretation of the metaphor only.

4This version of the document includes references to the test cases that will look like this footnote. Test cases that
check a valid result are prefixed by a "+", test cases that check error handling are prefixed by a "-". Each reference
to a test case includes the fully qualified name of the class containing the test as well as the method of that class
that implements the test case.

33

5 Constructing a Metaphor

5.1 Pragmatics

Element Natural Language Jaaa

Participants Humans, rarely computers Humans as writers, computers and
humans as readers

Sovereign over definition Technically: none Compiler
Reading order Potentially non-linear Typically non-linear
Text (broad) Textual material consumed Source code consumed
Text (narrow) Coherent sentences Anaphoric scope: a method decla-

ration, a constructor declaration, an
instance initializer or a static ini-
tializer

Table 5.1: Elements of pragmatics compared

Starting from an external perspective, it can be observed that while natural-language texts are
typically written and read for and by humans, source code of programs is typically written
by humans5, but read by humans and compilers. Further, in the latter case compilers have
sovereignty of definition over what a valid program is and what semantics programs have.

A compiler is typically instructed to read and translate all supplied source code during a
compilation run. In the context of natural language, e.g. novels are texts that are commonly
read in their entirety as well. How much of a text is read, is, however, the individual choice of
the reader, i.e. the text consumed is different in extent from the text written. This is true for
compilers just as much as it is for readers of novels because a compiler may be presented with a
large base of source code but may be asked to compile only a fraction of it making the compiler
read only a necessary subset of the sources presented. Novels and source code do not only have
things in common, but do of course differ as well, not only in the language used. Novels are
normally organized for linear reading from beginning to end. Object-oriented source code is,
however, due to its aim at re-use, inherently non-linear. While texts typically occur in books,
not all books are written for linear reading: dictionaries, encyclopedias as well as cookbooks are
collections of small texts that cross-reference each other either explicitly or implicitly to allow
for non-linear reading with considerably more entry points for coherent reading than in a novel
or a collection of articles.

A broad definition of text may be used to describe the entire textual material consumed - the
read parts of a book in the case of natural language or the parsed source code in the case of Java.
This broad definition of text will be used to transfer the concept of TWM to Java later on.

A narrow definition of text fits the single articles or recipes in that it is assumed that a text is
defined by the coherence established by anaphora and other means, but not by cross-references
(see footnote 2 on page 7). This narrow definition of text will serve to limit the scope of indirect

5Exceptions to this statement are subsumed under the term generative programming that describes the use of com-
puter programs that generate source code.

34

5.2 Syntax

anaphora whose transfer to Java is the purpose of this chapter. As already stated in the introduc-
tory paragraph of this chapter, I will apply indirect anaphora within the bodies of methods (see
[GJSB05, 209]), bodies of constructors (see [GJSB05, 240]), bodies of instance initializers (see
[GJSB05, 238]) and bodies of static initializers (see [GJSB05, 239]) only6. Each declaration of
a method, constructor or initializer I will regard as a separate text according to the narrow defi-
nition that is unrelated to all other such declarations in a file of source code. I will refer to this
narrowly defined text as anaphoric scope. Note that while the mentioned declarations include a
body which is the only place in which indirect anaphors can occur, the text is constituted by the
entire declaration because some potential anchors may lay outside the declaration’s body. E.g.
methods and constructors declare parameters that an indirect anaphor may be anchored in even
though parameter declarations are not part of the body of methods and constructors.

What is the reason for this limitation to the narrow definition of text? The potential that a
programmer is aware of an anchor suitable for an indirect anaphor. To be able to recognize a
suitable anchor for an indirect anaphor, its node in the TWM must be active, its theme focused
(see sections 2.4.3 and 2.5.5). An anchor’s node will be active, if the programmer did just read
it and its theme will be focused if no other theme became focused meanwhile. I assume that this
is likely within bodies of methods, constructors or initializers. It is, however, unlikely outside
of them for the following reasons. 1. Linearity applies within method bodies only, there is no
reading order defined outside of method bodies – i.e. it is unclear which member declarations
of a class declaration are read and in what order. 2. Similarly, inherited members cannot be
assumed to be active and focused because it is unlikely that the programmer read the super-type
definitions recently. 3. This does apply to accessible members of other used types as well.

5.2 Syntax

Element Natural Language Jaaa

Top-level structure Sentence Statement
Phrases NP; VP Expression; method invocation expression
Pronouns this and many others this, super
Ellipsis Supported Supported
Indirect anaphor (here) the <noun> IA ::= . Name |

IA(Argumentsopt)

Table 5.2: Elements of syntax compared

Before the meaning of a text can be analyzed, the syntax used by its language needs to be
considered. The highest level syntactic structure in natural language is a sentence. I identify

6+ tests.Kind1.test30IAInConstructor()
+ tests.Kind1.test31IAInStaticInitializer()
+ tests.Kind1.test32IAInInstanceInitializer()
+ tests.Kind1.test33IAInConstructorNoInterferenceWithInstanceInitializer()

35

5 Constructing a Metaphor

natural language sentences with Java statements. This is plausible because sentences are the
highest level syntactic elements in natural languages which is true for statements in bodies of
anaphoric scopes as well. Additionally, Java statements can have nested sub-statements just like
sentences can have nested sub-sentences that are called clauses.

In natural language, the next smaller syntactic element after clauses are phrases. They have
a head by which they are distinguished into noun-, verb-, prepositional and other phrases. I
compare noun phrases (NPs) of natural language to expressions in Java because NPs are typically
used to refer while expression are at runtime evaluated to a value which they may be said to
refer to. Verb phrases (VPs) comprise a verb and optionally arguments to the verb. I compare
VPs to method invocation expressions – because both express a concrete action. These two
interpretations are partly covered by the naming conventions of the JLS (see section 4.1). This
comparison is inconsistent from the perspective of natural language, though: VPs cannot be
NPs, while in Java method invocation expressions are valid expressions because, like all other
expressions, they are evaluated to a value at run-time7.

It has been shown in section 4.2 that pronouns and ellipses are both used in natural language
and in Java.

A final syntactical question concerns the form of indirect anaphors. In chapter 2 I did only
discuss indirect anaphors that have the form the <noun> wherein the is the definite determiner
signalling that the refernt is known to the reader and <noun> is a noun hinting at the ref-
erent. Analogous to that I will only handle indirect anaphors that take the form .Name or
IndirectAnaphor (Argumentsopt) in Jaaa8. This can be expressed by the syntax
definition in listing 5.1 (The syntax of the definition follows the convention used in the Java
language specification (see [GJSB05, 10]).)

IndirectAnaphor :
. Name
IndirectAnaphor (Argumentsopt)

Listing 5.1: Syntax definition for indirect anaphors in Jaaa

The indirect anaphor is a primary expression (see [GJSB05, 420]) in Jaaa. The initial dot (.) of
an indirect anaphor acts as definite determiner known from natural language that signals that a
referent is available. I chose to prefix the type used in an indirect anaphor using a dot instead
of using a yet to be introduced keyword the because I only implement a very small subset
of what the is used for in natural language and I do not even support direct anaphors. Using
the instead of a dot would make the lack of an implementation of direct anaphors even more
obvious and thus irritate further. The choice of the dot does have a positive aspect as well: it
is used to connect the parts of a chain of field accesses and method invocations and qualified
names in Java. Now that it is used at the beginning of indirect anaphors, one could assume that
there is something missing in front of the dot, which is true: the information missing in front of

7 Method invocation expressions for methods that return void are an exception to this.
8+ tests.General.test60AutonomousIA()

+ tests.General.test61IAInMethodAccess()
+ tests.General.test62IAInChainedMethodAccess()
- tests.General.test63TwoIAsChainedInChainedMethodAccess()
+ tests.General.test64IAAndFieldAccessInChainedMethodAccess()

36

5.3 Cognitive Foundations

the dot will be derived from the anchor that will be identified and an error will be raised if no
suitable anchor is available. Note that indirect anaphors can be used to qualify access to a field
or method9.

5.3 Cognitive Foundations

Element Natural Language Jaaa

Resolution happens While reading Statically (i.e. at compile-
time)

Construct of comprehension Text-world model Abstract syntax tree
Knowledge representation Textual, memorized Textual = memorized
Kind of model Schwarz-Friesel: modular here: modular
Lexicon entry Entries in mental lexicon Headers of invocables: pa-

rameter and return types;
Headers of classes and inter-
faces: direct and indirect su-
pertypes

Conceptual schema Frame; Script Frame of a type: fields,
accessors, direct and indi-
rect supertypes; Script (po-
tentially): body of an invoca-
ble

Model TWM AST=TWM, extra corpus
nodes=memory

Text understanding construction: TWM from
text semantics, elaboration:
TWM + memory (includes
anchoring)

parsing: AST from source,
transformation: AST + text
(broad + narrow) (includes
anchoring)

Elaboration Typically on-line Typically off-line

Table 5.3: Elements of cognitive foundations compared

Compilation is usually regarded as a constructive process in the sense that it creates a compiled

9+ tests.Kind1.test40IAQualifyingDoubleAccessToNonStaticField()
+ tests.Kind1.test41IAQualifyingDoubleAccessToNonStaticMethod()
+ tests.Kind1.test42IAQualifyingAccessToNonStaticFieldOfStaticInnerClass()
+ tests.Kind1.test43IAQualifyingAccessToChainOfNonStaticFieldsOfStaticInnerClass()
+ tests.Kind1.test44IAQualifyingAccessToNonStaticFieldOfNonStaticInnerClass()
+ tests.Kind1.test45IAQualifyingAccessToNonStaticMethodOfStaticInnerClass()
+ tests.Kind1.test46IAQualifyingAccessToNonStaticMethodOfNonStaticInnerClass()
- tests.Kind1.test47aIAQualifyingAccessToNonStaticFieldOfStaticInnerClassWithAnchorOfEnclosingClass()
- tests.Kind1.test47bIAQualifyingAccessToNonStaticFieldOfNonStaticInnerClassWithAnchorOfEnclosingClass()

37

5 Constructing a Metaphor

binary and the compiler creates an abstract syntax tree (AST) to elaborate the parsed source code
structure10. Similarly, the description of the cognitive model of anaphora processing of Schwarz-
Friesel referred to in chapter 2 includes the construction of a text-world model (TWM)11. The
reliance of compilation on ASTs is the reason that made me choose to implement statically-
resolved indirect anaphora over dynamically-resolved ones: anaphora resolution can at compile
time be based on existing information in the AST whereas run-time resolution would require
analysis of the run-time state of a program containing anaphors. There is also the idea that
statically-resolved anaphors are more likely to have referents that have a representation in the
source code than dynamically-resolved anaphors and do thus make it easier to understand a piece
of source code. This is yet nothing but an unsubstantiated hypothesis, though. Static resolution
also fits the fact that there are technical documents like specifications available in natural lan-
guage that describe how to do things without the reader actually performing the actions, which
is the equivalent of the division between compile-time and run-time in computing.

5.3.1 Representations of knowledge

In this section I will compare natural language and Java with regard to models of knowledge
memorized in the human brain and the involvement of knowledge in understanding texts respec-
tively source code. Before the contribution of knowledge to the TWM can be discussed, models
of the representation of knowledge memorized in the human brain need to be considered. For
these models, there are two lines of theories in cognitive linguistics: holistic theories assume that
all knowledge is stored in a uniform fashion, modular theories suppose instead that lexical and
encyclopedic knowledge is stored separately in the mental lexicon and in conceptual schemata
even though both interact and can be redundant. Schwarz-Friesel’s model introduced in chapter
2 is a modular one, but what about Java?

A lexicon exists in Java that is involved in the compilation of source files and it is separate
from the source files. The lexicon is not explicitly mentioned in the Java language specification
which deals with a lexical grammar instead (see [GJSB05, 13]) that prescribes how a compiler
identifies tokens and comments in a stream of characters. Java’s tokens I regard as equivalent to
words in natural language. Hence, the application of the lexical grammar of Java is equivalent
to the identification of words out of single characters that happens when humans look at a text.
The Java language specification contains an exhaustive list of keywords, separators and operators
and gives production rules for the construction and parsing of valid identifiers and literals (i.e.
all forms of tokens) as well as comments (see [GJSB05, 19ff.]) and thus implicitly provides
a lexicon for Java. The same may be found in theories of the mental lexicon that may either
propose exhaustive lists of words and their forms, rules to recognize and construct them as well

10That compilers do, besides reading source code, read libraries in binary form, will not be treated here. I deem
libraries that are available in binary form only a special case of code available as source because compilers are
equally capable of reading source and binary representations. The same is true for humans, even though binary
representations are not made to be read by humans which is why they are not able to read it as efficiently as
source code. That is why this case is special – but not entirely different.

11One may object that a TWM is a graph, whereas an AST is, by its name, a tree i.e. a restricted form of a graph.
This may be true for some compilers, but not for all, though. The JastAddJ compiler used for the implementation
described in chapter 7 features node attributes that allow graphs be constructed via attributes attached to the nodes
of the AST.

38

5.3 Cognitive Foundations

as mixed approaches12. Besides this similarity, the lexicon of Java is, unlike the mental lexicon,
fixed and its entries are semantically poor because they do not contain any relations between
each other as in the case of entries of the mental lexicon (see section 2.4.1). The semantic gap
pointed at in section 4.1 thus manifests itself at the lexical level too: not only do the contents of
the entries in Java’s lexicon and the mental lexicon differ, Java has only a single lexicon entry
(a set of production rules) for all identifiers in Java source code, while, from a natural language
perspective, there are countless entries in a mental lexicon applying to the different identifiers
used in Java source code.

After treating lexical knowledge, conceptual knowledge needs to be looked at. However, I
could not identify any conceptual knowledge in Java that (a) exists independent of the source
code to be processed by a Java compiler or to be read by a Java programmer and that (b) would
contribute to the compilation of Java source code by other means than the fact that the compiler
implements the Java language specification. It is at this stage impossible to distinguish modular
and holistic models of knowledge in the case of Java due to the lack of text-external knowledge
involved in the compilation of Java source code.

If neither lexical nor conceptual knowledge similar to the one involved in human understand-
ing of text is found in Java aside the source code, does Java involve such knowledge at all?
This is the case. However, the knowledge is not separated from source code, it is represented
within source code. E.g. inheritance hierarchies expressed by extends and implements clauses
in Java express what is known as hyperonymy in linguistics: the relation between a term and its
superordinate term. Textual knowledge representation is not only in source code used instead
of memorized knowledge, but in natural language as well. It is typical for technical texts to
define terms used later. These definitions enumerate the constituents of objects described by
a term and how they relate to other objects. I did not read enough on models describing the
creation of lexical-semantic and conceptual knowledge in the human brain but I guess that read-
ing representations of knowledge in texts is undoubtedly a way in which mental representations
of knowledge can be created and modified – if the information given in the text is memorized
instead of being forgotten. Hence, for an optimal (and theoretical) reader who memorizes all
knowledge represented in a text, the meaning conveyed by textual and memorized knowledge
representation will be identical. Since computer programs are made to be precise, a compiler
needs to be the implementation of such an optimal reader. The consequence of this is that in
the remainder of this section textual representation of knowledge will be treated as if it was the
memorized knowledge representation ad hoc created from that very textual representation of
knowledge. The benefit of this is that no form of textual knowledge representation needs to be
introduced because the semantically equivalent form of memorized knowledge representation
introduced in section 2.4.1 can be used.

Given that knowledge in Java is not separated from source code, could it make sense to sepa-
rate knowledge from source code? It could be expected that the amount of source code required
would be reduced, because the memorized knowledge required to compile the source code would
be external to the source code. Just like source code, the memorized knowledge would need to
be modular to be re-used in different projects and would need to be transportable so that it could
be used by different programmers to compile source code on different computers. The represen-

12As mentioned in chapter 2, my knowledge of theories on the structure of the mental lexicon is yet limited.

39

5 Constructing a Metaphor

tation of memorized knowledge would need to be open to examination by programmers because
computer programs are typically deterministic and being able to read all information constituting
a program is crucial in debugging programs that do not work as expected. A textual represen-
tation would fit this purpose well because today’s programming systems are made to visualize
and manipulate textual representations. The inclusion of memorized knowledge within source
code does already fulfill these criteria of modularity, transportability and examinability without
requiring programmers to learn another textual representation. Hence, it would not make sense
to separate knowledge from source code.

While no actual division between memorized knowledge and texts that represent knowledge
is found in Java, it is possible to base the knowledge representation of texts on a modular model
that distinguishes lexical-semantic and conceptual knowledge13. Based on such a model of
knowledge representation in texts, text understanding can be modeled via three-tier semantics
and this model can be transferred to the compilation of source code by compilers. This requires
that the nodes of the TWM, lexicon entries and conceptual schemata can be identified in the
AST, the parsed form of source code processed by a compiler. In the following paragraphs I will
identify elements of three-tier semantic in the AST, based on criteria for the three tiers that had
been given in sections 2.4.1 and 2.4.2.

As a working hypothesis, I consider the nodes of the AST equivalent to the nodes of a TWM.
Theoretically, all nodes of an AST take a special role as a complement of a lexicon entry or (part
of) a conceptual schema. This fact reflects what has been stated above: that knowledge in Java
is represented within the source code instead of within mental representations external to the
source code. This lossless coalescence of textual and memorized representations of knowledge
known from natural language during their transfer to Java leads to the dual function of AST
nodes14.

I treat method headers (see [GJSB05, 209f.]) as lexicon entries15 in Jaaa because parameter
and return types in method headers resemble thematic roles of a verb’s lexicon entry (even
though types are more specific than thematic roles). The same is true for constructor declarations
(see [GJSB05, 240]): their parameters resemble thematic roles and even though they do not
return a value explicitly, constructor invocations result in a value of the type whose name is used
in the class instance creation expression16. The constructor header is the constructor declaration
without the constructor body. I will use the term invocable to refer to methods and constructors,
header of an invocable to refer to the header of a method or constructor, body of an invocable to
refer to the body of a method or constructor.

Headers of classes and interfaces17 I treat as if they were lexicon entries of nouns because

13It may as well be possible to use a holistic model instead and it may be interesting to seek to demonstrate the
equivalence of what holistic and modular models are able to express. I will stick to Schwarz-Friesel’s modular
model from chapter 2, though.

14The coalescence also obviates the need for lexicon entries, concepts and conceptual schema to be created and
elaborated in Jaaa. Understanding theories of these processes from cognitive linguistics seems fruitful nonetheless
(see future work item 2.6 on page 20).

15This work does not deal with the lexical grammar of Java, but with lexicon entries as found in models of the mental
lexicon.

16Constructors are not invoked directly but a class instance creation expression is used instead that will make the
JVM invoke the constructor upon the newly created instance.

17 By class and interface header I mean the name of a class or interface and all its supertypes. This diverges from the

40

5.3 Cognitive Foundations

the type graph in a Java program resembles a semantic network of hyponymy (subtype) and
hyperonymy (supertype) relations that connect nominal lexicon entries in models of natural
language18.

The declarations of fields and accessors19 declared or inherited by a class or interface do,
together with its direct and indirect supertypes, form what I will call the frame of the class or
interface. The fields and accessors play the role that variables have in frames introduced in
section 2.4.1. This choice is obvious since the definition of Stillings et al. reproduced in section
2.4.1 is very close to the definition of a class in Java. I ignored their mention of procedures
because I want to model indirect anaphora only, not execution of methods or procedures, which
is already implemented in Java.

Future Work 5.1 (Scripts in Java) It would also be possible to use scripts to model conceptual
knowledge (see 2.4.1). Methods, constructors and even initializers seem to be similar to scripts,
especially given Schwarz-Friesel’s mention of pre- and post-conditions that reminds of design
by contract. However, unlike a method, constructor or initializer, which is associated to its
declaring type and its subtypes and in the case of non-static methods an instance of the declaring
type, scripts are not exclusively associated to an entity. Scripts are not investigated as a form of
conceptual schemata in this work, they may be considered in future work, though.

5.3.2 Abstract syntax trees as text-world models

I proposed above that all nodes of the AST are equivalent to the nodes of a TWM as well as
to memorized knowledge. This is not completely accurate because bodies20 are not yet under-
stood as scripts in Jaaa and thus the AST nodes within bodies do not yet represent memorized
knowledge but only TWM nodes. The other elements of Java source code outside of bodies I did
already describe above as taking the role of memorized knowledge. In this section I will discuss
how these AST nodes outside of bodies (hereafter "extra corpus nodes") relate to AST nodes
inside bodies that do not stand for memorized knowledge (hereafter "intra corpus nodes").

Lacking an implementation of scripts, extra corpus nodes can be understood as representing
given knowledge – given in the temporal sense that it is available when a method body is to
be compiled21. Similarly to what had been described in section 2.4.2, text understanding (i.e.
understanding of source code within method bodies) can be grouped into two phases22: first,

definition of a nominal lexicon entry in the context of natural language used in section 2.4.1. In section 2.4.1 the
lexicon entry contained mandatory parts of the noun, that I do not include in the class or interface header. This
choice is due to the fact that fields of classes do not necessarily contain parts of an object but can as well contain
objects that are in some other way associated to the object or optional parts of the object that would in section
2.4.1 be part of the conceptual schema and hence will be part of the conceptual schema in Jaaa as well.

18The other kinds of types known in Java – type parameters and array types – are not treated as part of this work.
19Accessor methods are used to get or set the value of a field of a class. I will define which methods I consider

to be accessors in section 6.3.1 below. Other methods than accessors will be ignored here because they cannot
be used at runtime to navigate the relations between the classes without risking side-effects or having to provide
arguments.

20hereafter subsuming bodies of methods, constructors and initializers
21When scripts are implemented, the compilation of a method body can depend on the compilation of other method

bodies what will lead to more complex dependencies.
22I shall be noted that there are theories in cognitive linguistics that assume parallel processing (see [Sch08, 195])

41

5 Constructing a Metaphor

AST nodes are created that reflect the express semantics of the source code (e.g. with references
yet unresolved), second, the intra corpus nodes are elaborated with knowledge derived from
extra corpus nodes (e.g. while anchoring indirect anaphors). It is at this stage that the broad and
the narrow definition of text introduced in section 5.1 overlap. The broad sense of text applies,
because most23 extra corpus nodes are outside of the text defined in the narrow sense. The
narrow sense applies, because the anchor of an indirect anaphor can only be within the same
body - i.e. within the same text in the narrow sense.

It is already true for existing features of the Java programming language that intra corpus
nodes relate to extra corpus nodes, e.g.

• Simple expression names (see [GJSB05, 134]) relate to the declaration of a local variable,
a parameter or a field (of which only the latter is extra corpus).

• A field access expression relates to a field declaration,

• the same is true for method invocation expressions and method declarations

• as well as for class instance creation expressions and class declarations.

• Additionally, the type of the result of an expression is connected to a class or interface
declaration.

Analogously, indirect anaphors relate to extra corpus nodes in order to be anchored, and, like
expressions accessing local variables or parameters also incorporate intra corpus nodes in refer-
entialization. E.g. implementing meronymy-based anchoring (see section 2.5.2) in Java requires
an (intra corpus) anchor that is related to an (extra corpus) class declaration that declares a field
for which a meronymic indirect anaphor stands.

The two phases of text understanding already identified in compilation as well may be called
parsing and transformation stages. During the parsing stage, instantiation of nodes takes place
through which the parser constructs a syntax tree that represents what is directly expressed in
the parsed source code. This syntax tree can already be abstract in the sense that brackets are
excluded because precedence can be modeled by the tree’s structure instead. The tree created by
the parser is further abstracted in a second stage through transformations that correspond to the
elaboration phase in text understanding. In the case of abovementioned existing features of Java,
the nodes created by the parser are related to nodes representing declarations and the relation is
established based on identical identifiers used in the parsed node and the declaration as well as
based on contextual information. To anchor indirect anaphors instead, it is necessary to find a
suitable anchor among the intra corpus nodes that has a header or frame the indirect anaphor can
be anchored in. Different forms of anchoring and the nodes involved will be described below. A
final important point is to be made on defaults.

In chapter 2 it was put forward that conceptual schemata provide defaults that indirect anaphors
can replace. It was said that during text understanding, for each occurence of an indirect anaphor

i.e. processing of the phases may not be strictly sequential as long as there are no dependencies between them
that force sequential processing. Section 5.3.4 below will discuss this issue further.

23Note that headers of method or constructor declarations are extra corpus, but still belong to the text in the narrow
sense because the headers of methods and constructors are part of the corresponding anaphoric scopes.

42

5.3 Cognitive Foundations

a new nodes is created in the TWM that is used instead of the default provided by the conceptual
schema that the new node replaces. To understand what that means during the compilation of a
Jaaa program, the following questions need to be answered. What is a default in Java? Which
kind of nodes represent indirect anaphors in Java? Which kinds of nodes are the ones that are
instantiated to replace defaults? How does the replacement take place? The answer to the first
question will be developed in the subsequent section 5.3.3: the declared types of fields and the
return and argument types of accessors do in Java serve the same purpose as defaults do in text
understanding. Details on the kinds of nodes representing indirect anaphors will be deferred
until chapter 6. I will not yet attempt a generalized discussion of the other questions but defer it
to a later version instead, when further kinds of indirect anaphors have been implemented.

5.3.3 Defaults, initializers and declared types

Conceptual schemata contain variables for concepts. These variables can have a default value.
Do default values exist in Java as well? It was above established that fields of classes equal
variables in frames. Field declarations can have an initializer, which is, however not identical to
a default value of a variable in a frame. While initializers can depend on or trigger arbitrarily
complex computation at run-time and it is not expected that the resulting value can be inferred
reliably at compile-time, default values are available during text understanding (the equivalent
of being available at compile-time). I.e. it looks as if there are no defaults in Java. What is the
role that defaults play while understanding texts in natural language?

Schwarz-Friesel gives examples that involve defaults, the two of which that are relevant for
treating the function of defaults I reproduce here (translations mine). (1) "Martin bekam ein
Buch" [Sch08, 118] ("Martin got a book"). While reading this sentence, a default GIVER is
activated, even though the GIVER is never referred to - i.e. text understanding would, as far as
I can see, have worked equally well, hadn’t the default been activated. (2) "Jürgen besuchte ein
Restaurant in Tunis. Der Kellner erhielt ein großzügiges Trinkgeld." [Sch08, 119] ("Jürgen ate
out in Tunis. The waiter received a generous tip."). In this case, the default value for WAITER
in a RESTAURANT frame or script previously activated by the phase "ate out" can be said to be
replaced while reading by a newly instantiated WAITER node constructed for "The waiter". I.e.
the reading of both sentences leads to an understanding without using the default value in the
TWM. Even if one considers that a RESTAURANT script is acted out by a person, I could not
yet imagine the default for waiter being useful except for cases when an actual waiter is present
whose representation would then replace the default in the mental model. Since I cannot yet find
a use of the value of a default, but defaults are clearly used to identify matching replacement
values, I consider default values known from text understanding to be equivalent to the declared
types of fields and the parameter and return types of accessors in Java programming languages,
but not to values, initial values or default values known in programming languages.

Future Work 5.2 (Functions of default values of schemata) The literature may provide infor-
mation on when default values may actually function as more than means to identify suitable
replacement values and as targets to replacement.

43

5 Constructing a Metaphor

5.3.4 When elaboration happens

In section 2.4.2 I highlighted that (in theory) text understanding is a two-step process in which
an initially created TWM is elaborated in a later step and that the two steps may be parallelized.
Parallelization is the norm, but not mandatory: if all required information is available when an
textual entity is read, construction and elaboration of the corresponding TWM nodes will be
immediate or on-line (see [Sch08, 194f.]). If information is lacking, construction of the TWM
nodes happens immediately but elaboration is deferred until the reader reaches a later point in
the text that provides the information required for so-called off-line elaboration. Two-phase
interpretation was also said to happen when a compiler works on the AST (see section 5.3.2).
However, I guess that all compilers create a syntax tree that immediately represents the parsed
source code before beginning compilation i.e. elaboration. I.e. it is not possible to elaborate a
node of the syntax tree on-line i.e. just at the moment when it has been created24.

5.4 Semantics

Element Natural Language Jaaa

Thematic roles AGENT, PATIENT, THEME ... Argument- and return types of
methods

Nominal relations Hyperonymy, meronymy ... Supertypes, fields and accessors
Referent of Anchor Node in TWM Node in AST related to the header

of: method, class or interface
Referent of IA Node in TWM Node in AST related to the header

of: class or interface
Anchoring As per section 2.5.5 Analogous to natural language,

theme yet unsupported
Referential ambiguity Possible Reducible

Table 5.4: Elements of semantics compared

Now that the cognitive foundations have been laid, it is possible to describe semantic elements
of the two contexts. Beginning with verb semantics, thematic roles of natural languages are
reflected in the types of the declared parameters and return types of headers of invocables in
Java. These declared types are, however, more specific than the generic thematic roles. Relevant
for semantics of nouns are the relations between them. Natural language distinguishes is-a
relations like synonymy and hyperonymy as well as part-of relations (meronymy). While is-a
relations are manifest in Java source code in the form of extends and implements clauses that
define subtype relations, meronymy is in Java expressed via fields and accessor methods of a
class. This comparison is fuzzy, though. In the absence of further study I would guess that there

24This may be an over-generalization, but it is at least true for the JastAddJ compiler that the implementation from
chapter 7 is based on and I will stick to this potential over-generalization as a working hypothesis.

44

5.4 Semantics

normally are no synonymy relations in the type graphs used within Java programs because one
typically strives to avoid redundancy in source code.

5.4.1 Indirect anaphors

Syntactically, an indirect anaphor is a primary expression in source code (see section 5.2). Its
semantics are defined as follows. The anaphoric scope that the indirect anaphor occurs in is
called the anaphoric scope of the indirect anaphor. When successfully anchored, an indirect
anaphor relates to another source code entity in its anaphoric scope. This source code entity is
said to function as the anchor of the indirect anaphor. The relation between indirect anaphor and
anchor is called indirect anaphora. (Note that it is possible that more than one indirect anaphor
is anchored in an anchor25.) An anchor must have a type and thus relate to a lexicon entry that is
either (a) the header of a class or of an interface or (b) the header of an invocable. Furthermore,
in case (a) the lexicon entry is related to a conceptual scope which is a frame. The header (and,
if available, the frame) constitute the cognitive domain of the anchor. Both the header and, if
available, the frame of an anchor are used to anchor indirect anaphors at compile-time. They
manifest in the AST in the form of nodes representing the declaration of an invocable, class
or interface. The indirect anaphor has a type, too (the type of the indirect anaphor), which is
mentioned in its source representation and leads to the indirect anaphor’s node in the AST being
related to a class or interface declaration which is involved in anchoring as well26.

The anchor source-code entity stands in a reference relation to a node in the AST which serves
as its referent. The same is true for the indirect anaphor. After parsing, the referent of an indirect
anaphor will typically be a node called indirect anaphor. This node will typically be transformed
into a node of another type during compilation. Possible referents after transformation are spe-
cific to the kind of indirect anaphor. Note that the reference relation is purely notional – i.e. not
manifest in the AST or any other structure.

Besides the mentioned compile-time semantics, expressions have run-time semantics as well
concerning which the Java language specification defines the following.

25- tests.General.test50Kind1IANotAnchoredForLackOfAnchors()
+ tests.General.test51Kind1IAAnchoredInSingleAnchor()
+ tests.General.test52TwoKind1IAsAnchoredInOneAnchor()
- tests.General.test53ThreeKind1IAsAnchoredInOneAnchor()

26+ tests.General.test10IAWithTypeInteger()
- tests.General.test11NoPrimitiveIA()
+ tests.General.test12IAWithTypeJavaLangInteger()
+ tests.General.test13IAWithTypeJavaUtilVector()
+ tests.General.test14IAWithImportedTypeVector()
+ tests.General.test15IAWithImportedTypeVectorWithTypeParameterString()
+ tests.General.test16IAWithTypeJavaUtilVectorWithTypeParameterString()
+ tests.General.test17aIAWithTypeOfSameClass()
+ tests.General.test17bIAWithTypeOfEnclosingClass()
+ tests.General.test17cIAWithTypeOfInnerClass()
+ tests.General.test17dIAWithTypeDefinedInSameFile()
- tests.General.test18IAWithArrayType()
+ tests.General.test19aIAWithParameterizedType()
- tests.General.test19bIAWithUnknownType()

45

5 Constructing a Metaphor

When an expression in a program is evaluated (executed), the result denotes one of
three things:

• A variable (§4.12) (in C, this would be called an lvalue)

• A value (§4.2, §4.3)

• Nothing (the expression is said to be void)

[GJSB05, 409], emphasis in original

Applied to indirect anaphors, this means that they can at run-time be evaluated to a result. In
the case of indirect anaphors, a result denotes either a value or a variable. I will not distinguish
between the result and its denotatum but will instead say that an indirect anaphor has or denotes
a result which is a value or a variable. The result of the indirect anaphor is specific to the
kind of indirect anaphora. (The specifics of the different kinds of indirect anaphora in Jaaa
are given in chapter 6.) The phrase the value of an indirect anaphor covers the value of an
indirect anaphor that denotes a value as well as the value of a variable of an indirect anaphors
that denotes a variable (cf. [GJSB05, 410]). The type of the result of an indirect anaphor is
assignment compatible (see [GJSB05, 95]) with the type of the indirect anaphor, unless heap
pollution occurs (cf. [GJSB05, 410])27. Assignment compatibility is, except in the case of heap
pollution, ensured at compile time. An indirect anaphor can not yet denote a value of a primitive
type. This design choice is motivated by the fact that primitive types have no header or frame.
It may be waived later. Note that the result of an indirect anaphor is a run-time entity and thus
not represented in the AST.

5.4.2 Anchoring

Before the specific relations between anchor and indirect anaphor can be described, the cognitive
strategies used to select a suitable anchor among a set of potential anchors from section 2.5.5
need to be transferred to Jaaa. The transfer results in the following strategies.

1. Identify a suitable anchor within the anaphoric scope that contains the indirect anaphor,
i.e. identify a souce code entity whose cognitive domain has a place for the referent
of the indirect anaphor28. A suitable anchor is determined by applying the following
conditions29 that filter the set of potential anchors.

27+ tests.General.test40IAWithDirectSuperclassOfAnchorType()
+ tests.General.test41IAWithIndirectSuperclassOfAnchorType()
+ tests.General.test42IAWithInterfaceImplementedByAnchorType()
+ tests.General.test43IAWithInterfaceImplementedBySuperclassOfAnchorType()
- tests.General.test44IAWithSubclassOfAnchorType()
- tests.General.test45IAWithSiblingOfAnchorType()

28See chapters 6 and 7 for specifics.
29The strategy in section 2.5.5 was limited to typical cases. Here, exceptions will not be allowed because a compiler

is supposed to follow clear rules. If it is found that the rules do not meet the expectations of programmers they
need to be adapted.

46

5.4 Semantics

a) The anchor must occur within the anaphoric scope of the indirect anaphor and be
identical to or part of a statement before30 the statement that contains the indirect
anaphor31.

b) No void: If the anchor is a method invocation expression, the method invoked must
not return void32.

c) No primitives: If the result of an expression is a primitive, it can be focused and
activated but it cannot function as anchor because primitives are not made up from
parts that could be useful in anchoring33.

d) No literals: Literal expressions cannot be used as anchors34,35.

e) No arguments of explicit constructor invocations: Explicit constructor invocations
that can appear as the first statement in a constructor body can have arguments.
These arguments cannot function as anchors36,37.

f) Referential unambiguity: there may be more than one potential anchor for an indirect
anaphor but only one anchor can have a suitable referent for the indirect anaphor
in its cognitive domain38. Note that multiple occurrences of an expression in the
source code can lead to referential ambiguity (see section 5.4.3 for a discussion) if
the occurrences denote the same variable.

g) Plausibility: the anchoring must be plausible on-line i.e. during compilation of the
indirect anaphor. This is the case, when a role in the cognitive domain of the anchor
can be set by the indirect anaphor ad hoc or using inference (see step 2. below that
will actually perform what is only required to be possible by this condition).

h) Theme ignored: This is actually not a condition, but a reminder of the condition
that was expressed in case of natural language: that the cognitive domain of the po-
tential anchor must be part of the currently focused theme. As has been explained
in future work item 2.10, I did not find a good model of theme. Frames, the only
form of conceptual schemata yet transferred to Jaaa, cannot be used as themes di-
rectly because they are relatively find-grained while Schwarz-Friesel also used rather
coarse-grained scripts to establish a theme what looks more promising but is not pos-
sible here, since scripts have not yet been transferred. Jaaa will thus not use themes
right so far. Focus and activity will thus be irrelevant as well.

30- tests.General.test07NotCataphoric()
31This is choice made to avoid cases like the right-hand operand of an assignment being an indirect anaphor that

denotes the value of the left-hand operand of the assignment. If it is later found that such constructs are not
irritating, they may be implemented.

32- tests.General.test03NoVoidMethodAccess()
33- tests.General.test04NoPrimitiveAnchor()
34 This is an arbitrary decision that may be waived later, when primitives can be used as anchors.
35- tests.General.test02NoLiterals()
36This is due to the fact that the current implementation inserts a local variable before the statement containing the

anchor. This is not possible for explicit constructor invocations that can only be the first statement in a constructor
body. This limitation may be waived later.

37- tests.General.test05NoArgumentOfExplicitConstructorInvocationAsAnchor()
38- tests.General.test20ReferentialUnambiguityWRTReturnTypes()

47

5 Constructing a Metaphor

i) Last 2 statements: Instead of requiring that the theme of a suitable anchor be focused,
it will be required that the headers of the methods, classes and interfaces referred to
by suitable anchors must be active. This is declared to be the case if they have
been read during the last two statement prior to the statement containing the indirect
anaphor. 39

2. Establish the relation between indirect anaphor and the suitable anchor in one of the fol-
lowing ways.

a) If the anchor relates to the header of a method and the return type of the method
is assignment compatible (see [GJSB05, 95]) with the type of the indirect anaphor,
or the anchor refers to the header of a constructor and the class instantiated is as-
signment compatible with the type of the indirect anaphor, indirect anaphora will be
established as described in section 6.2.

b) Otherwise, if the anchor relates to the header of a class or interface, the class or
interface has a frame that is the conceptual scope of the header. If the frame con-
tains a field whose type is assignment compatible with the result type of the indirect
anaphor or if the frame contains an accessor method that is compatible with the type
of the indirect anaphor, indirect anaphora will be created as described in section 6.3.

c) If the anchor relates to the header of a class or interface whose frame is not suitable
for anchoring according to 2a and 2b, indirect anaphora will be inferred as described
in section 6.4.

5.4.3 Referential ambiguity

Referential ambiguity means that a single suitable anchor provides access to more than one
suitable referent of the indirect anaphor or that there are at least two suitable anchors available
leading to more than one suitable referent of the indirect anaphor as well. It is important to keep
a compile-time perspective, though: it does not matter in anaphora resolution what the result of
a referent represents at runtime. This differentiates referential ambiguity from the alias problem
that arises due to the values that variables hold at run-time.

There are cases in which referential ambiguity can be reduced. E.g. when a local variable
declaration has an initializing expression and both are suitable anchors for an indirect anaphor,
one can safely be discarded40.

5.5 Naturalness

The transfer of indirect anaphora from natural language to programming languages in the form
of a metaphor is supposed to make programming languages more natural (i.e. known or easy

39- tests.General.test30IgnoreExpressionsInSameStatement()
- tests.General.test31IgnoreExpressionInThirdLastVariableDeclaration()
+ tests.General.test32AnchorToExpressionInSecondLastStatement()

40+ tests.Kind2.test10ReferentialAmbiguity()
+ tests.Kind2.test11PreventedReferentialAmbiguityWhenAnchoringInLocalVariableDeclarationWithInitializer()

48

5.6 Summary

to learn, cf. section 3.2). It was in that section demanded that for features that are supposed
to be natural it should be argued why they are supposed to be natural. What does this mean
in the case of the metaphor of indirect anaphora added to programming language? Why is
it supposed to be natural? Because it is rooted in cognitive theories of natural language. If
these theories accurately describe natural language, and if their implementation in programming
languages matches the theories, then indirect anaphors will be known or easy to learn. Up to the
proof of this hypothesis by experiments involving human programmers, this chapter will remain
preparatory scaffolding for the proof.

5.6 Summary

This chapter combined findings from chapters 2, 3 and 4 to outline a metaphor of indirect
anaphora transferred from natural language to Java. At the level of pragmatics, the sovereignty
of definition of the compiler and reading order were highlighted, before a broad and a narrow
definition of text were developed. Syntactically, structures including sentences and phrases were
discussed and the syntax of indirect anaphors in Jaaa has been described. Concerning cognitive
foundations it was found that Schwarz-Friesel’s modular semantics can be mapped to Jaaa even
though textual and memorized knowledge is identical in Jaaa. Nodes in the AST of Jaaa are
equivalent to nodes of the TWM and extra corpus nodes are equivalent to memorized knowl-
edge, because an interpretation of bodies of methods and constructors as scripts has not yet been
implemented. The elaboration of the AST was discussed as well and it was concluded that it
typically happens off-line. Elaboration is based on lexicon entries that in Jaaa are not identical
to information provided to Java’s lexical grammar, but to headers of invocables (i.e. parame-
ter and return types) or headers of classes and interfaces (i.e. direct and indirect supertypes).
Elaboration also makes use of frames that in Jaaa means the fields, accessors, direct and indi-
rect supertypes of a type. It turned out that defaults in conceptual schemata do not seem to be
identical to initializers in Java and need further study. Concerning semantics it was fixed that
thematic roles are reflected in declared return types and types of parameters, that hyperonymy
and meronymy are manifest in the declaration of supertypes, fields and accessors. The referent
of an anchor was said to be a node in the AST that is related to the header of a method, a class
or an interface. The referent of an indirect anaphor was said to be a node in the AST related to
the header of a class or interface. Anchoring in Jaaa is analogous to what had been described in
section 2.5.5 except that no thematic progression is implemented, partly because solitary frames
identified in Java seem to be too fine-grained to be used as theme. It was found that referential
ambiguity can in some cases be automatically reduced in Jaaa. The chapter closes by contex-
tualizing the metaphor of indirect anaphora as added to programming languages: it is pointed
out that the roots of the constructed metaphor are in cognitive linguistics, that these roots are
suppposed to make the metaphor natural – i.e. known or easy to learn – and that the chapter is
only preparatory scaffolding for a future proof of this hypothesis.

49

6 Indirect Anaphora for Java

Having mapped entities found in models used in cognitive linguistics to the Java programming
language, I will now use the mapped entities to transfer specific kinds of indirect anaphora
from section 2.5 to Jaaa. This transfer will abstract the specifics of an implementation of the
transferred kinds of indirect anaphora, which will be detailed in chapter 7. Because this chapter
abstracts implementation details, it will use terminology from the Java language specification
as far as possible. Each kind of indirect anaphora will be introduced by an example as well as
pre- and postconditions that need to be met to comply to the kind of indirect anaphora. Before
specific forms are introduced, pre- and post conditions that apply to all kinds of indirect anaphora
are given.

6.1 General Properties of Indirect Anaphors in Java

All occurences of indirect anaphors must satisfy the following conditions.

6.1.1 Preconditions

For an indirect anaphor to be compilable, the following conditions must hold.

1. The anchor is suitable, i.e. it satisfies conditions 1a - 1f, 1h, 1i given on pages 46f.

2. The indirect anaphor is within the scope of the type used as part of the indirect anaphor
(see [GJSB05, 117ff.,132,160ff.,190,263]).

6.1.2 Postconditions

After an indirect anaphor has been compiled, the following conditions must hold.

1. Run-time evaluation of the indirect anaphor must not be affected by concurrent compu-
tation happening between the execution of the anchor and the evaluation of the indirect
anaphor.

6.1.3 Invariants

Before, during and after the compilation of an indirect anaphor, the following conditions must
hold.

1. If the anchor is an expression, the number of times that it is evaluated is the same as when
no indirect anaphor was in an indirect anaphora relation to it.

51

6 Indirect Anaphora for Java

2. Line numbers are the same as before compilation of the indirect anaphor1.

6.2 Kind 1: Anchoring Based on Headers of Invocables

The simplest form of indirect anaphora in Jaaa occurs when an indirect anaphor relates to a
method invocation expression or a class instance create expression and denotes the value re-
turned or created by the expression. This form is analogous to anchoring based on thematic
roles described in section 2.5.1. After an example, the pre- and postconditions of this anchoring
strategy are given below in an implementation-indepedenten form. The details of an implemen-
tation will be elaborated in section 7.2.

6.2.1 Example

Consider listing 6.1 below that shows a method that is part of the JUnit code base2. In the
method, a Result instance is returned by a method invocation, stored in a local variable
result and accessed immediately afterwards.

52 public static void runMainAndExit(JUnitSystem system,
String... args) {

53 Result result= new JUnitCore().runMain(system, args);
54 system.exit(result.wasSuccessful() ? 0 : 1);
55 }

Listing 6.1: Snippet from org.junit.runner.JUnitCore (JUnit 4.8.2)

The variable result is replaced by use of an indirect anaphor .Result in listing 6.2 that was
compiled and passed the JUnit tests of JUnit afterwards.

52 public static void runMainAndExit(JUnitSystem system,
String... args) {

53 new JUnitCore().runMain(system, args);
54 system.exit(.Result.wasSuccessful() ? 0 : 1);
55 }

Listing 6.2: The indirect anaphor .Result in a modified version of listing 6.1

The indirect anaphor .Result is anchored in the method invocation in line 53 and thus does
at runtime denote the value returned by the method invocation, replacing the previously used
local variable. (Implementation details on this examples are deferred until section 7.2.1.) In the
sample, the indirect anaphor shortens the source code by hiding where the result comes from. I
expect that programmers who are not familiar with the internals of JUnit but know the semantics
of indirect anaphors will be able to guess that it is obtained from the invocation of runMain.
Whether this is true in general needs to be shown by experimental evidence, though.

1+ tests.Kind1.test60LineNumbersInSubsequentExceptionsCorrespondToSourceCode()
+ tests.Kind1.test61LineNumbersInExceptionIncludingAnchorInStackTrace()

2version 4.8.2 was used, available from https://github.com/downloads/KentBeck/junit/junit-4.8.2-src.jar

52

6.2 Kind 1: Anchoring Based on Headers of Invocables

6.2.2 Preconditions

For an indirect anaphor of kind 1 to be compilable, the following conditions must hold.

1. The general preconditions laid out in section 6.1.1 are met.

2. The anchor is a method invocation expression or a class instance creation expression3.

3. The anchor refers to the header of an invocable that is accessible4.

4. If the anchor is a method invocation expression, the return type of the method invoked is
assignment compatible (see [GJSB05, 95]) with the type of the indirect anaphor (i.e. the
return type can be assigned to the indirect anaphor).

5. If the anchor is a class instance creation expression, the class of the instance created by
the expression must be assignment compatible with the type of the indirect anaphor.

6. The indirect anaphor is not the left-hand side operand of an assignment expression (be-
cause the result of the method invocation expression or class instance creation expression
denoted by the indirect anaphor is a value)5.

A compile-time error is raised if any of the abovementioned conditions is not met.

6.2.3 Postconditions

After an indirect anaphor of kind 1 has been compiled, the following conditions must hold.

1. If the anchor is a method invocation expression, the indirect anaphor does at runtime
denote the value that has been returned by the method invocation expression when the
latter was evaluated.

3+ tests.Kind1.test01AnchorInMethodAccess()
+ tests.Kind1.test02AnchorInMethodAccessWithinDot()
+ tests.Kind1.test03AnchorInMethodAccessInitializingAVariable()
+ tests.Kind1.test04AnchorInMethodAccessUponTheResultOfAMethodAccess()
+ tests.Kind1.test05AnchorInArgumentOfMethodAccess()
+ tests.Kind1.test20AnchorInClassInstanceExpr()
+ tests.Kind1.test21AnchorInClassInstanceExprWithinDot()
+ tests.Kind1.test22AnchorInClassInstanceExprInitializingAVariable()

4It is assumed that the method invocation expression or class instance creation expression compiles. For method
invocation expressions this means that the method to be invoked is e.g. accessible, applicable and appropriate (see
[GJSB05, 442ff.] and [GJSB05, 471ff.]). Such checks will not be reproduced as part of the implementation of this
indirect anaphor because they are to be performed during the compilation of the method invocation expression or
class instance creation expressions.

5- tests.Kind1.test90NoIAOnLeftHandSideOfAssignment()
+ tests.Kind1.test91IARightHandSideOperandOfAssignment()
+ tests.Kind1.test92IAInitialValueOfVariableDeclaration()
+ tests.Kind1.test93IAInitialValueOfVarDecl()
+ tests.Kind1.test94IAPartOfFieldAccessOnLeftHandSideOfAssignment()
+ tests.Kind1.test95IAPartOfMethodAccessOnLeftHandSideOfAssignment()
+ tests.Kind1.test96IAAsArgumentInMethodAccess()

53

6 Indirect Anaphora for Java

2. If the anchor is a class instance creation expression, the indirect anaphor does at runtime
denote the value that has been returned by the class instance creation expression when the
latter was evaluated.

3. The general postconditions laid out in section 6.1.2 are met.

A compiler does not provide a valid implementation of anchoring based on the header of invo-
cables if any of the abovementioned conditions is not met.

6.2.4 Invariants

Before, during and after the compilation of an indirect anaphor of kind 1, the following condi-
tions must hold.

1. The general invariants laid out in section 6.1.3 are met.

Future Work 6.1 (Underspecification of arguments) The current implementation of anchor-
ing based on headers of invocables is only able to denote a return value that has not been stored
in a variable. In natural language, however, arbitrary thematic roles of verbs can be omitted
– not only results. It would also be desirable to underspecify arguments in method invocations
as much as possible, potentially removing all method arguments, or in case of repeated invo-
cations all arguments that are identical for all invocations. The missing arguments would need
to be found from within the block (and potentially its outer blocks, recursively). Most likely the
arguments would have to be declared before use - unlike what can be done in natural language.
Experiments would need to show how often referential unambiguity can be achieved and how
fragile the invocations become to changes of surrounding code in order to evaluate this kind of
underspecification. It is obvious that such a feature would need a syntactically special form of
supplying arguments to methods so no problems arise in the case of overloaded methods that
can have multiple variants of a method with fewer arguments, just like in the case of underspec-
ification.

6.3 Kind 2: Anchoring Based on Fields and Accessors

The second kind of indirect anaphora in Jaaa implements meronymy-based as well as schema-
based anchoring known from sections 2.5.2 and 2.5.3 and allows parts of instances to be ac-
cessed6. The remainder of this section are devoted to definitions, an example, pre- and postcon-
ditions. The details of an implementation will be elaborated in section 7.3.

Note that the description of this kind of anaphor is mostly a sketch that has not yet been
implemented and may need to be altered during implementation.

6In footnote footnote 17 on page 40 I explained that headers to not contain meronymic information but only frames
do and that information on mandatory parts and otherwise directly related concepts are not distinguished in Jaaa.
Thus, the transferred kind of indirect anaphora integrates two kinds of indirect anaphora described by Schwarz-
Friesel who distinguished meronymy-based anchoring based on mandatory parts mentioned in the lexicon en-
try (see section 2.5.2) and schema-based anchoring based on directly related concepts mentioned in conceptual
schemata (see section 2.5.3).

54

6.3 Kind 2: Anchoring Based on Fields and Accessors

6.3.1 Accessors

Accessors are used to enable other objects to access inaccessible fields of an object. There are
two kinds of accessors: getters and setters. Their naming is conventionalized (see [GJSB05,
149]).

A getter is a method that can simply return the value of a field, or can e.g. initialize the field
lazily or convert an internal representation stored in the private field into an external represen-
tation provided by the getter. A getter has no parameters and a name that starts with "get" and
continues in mixed case, with the first letter after "get" being a capital one. The name is typically
derived from the name of the field.

A setter is a method that does not return anything (void) and has a single parameter. A setter
can simply set the field to the value of the parameter, or e.g. convert an external representation
accepted by the setter into an internal one stored in the field. The name of a setter starts with
"set" and continues in mixed case, with the first letter after "set" being a capital one. The name
is typically derived from the name of the field and the type of the field.

Since the semantics of accessors are only ensured by convention, there are accessors that
do not follow the naming conventions. It would be possible to define an annotation that could
optionally be added to these unconventional accessors to make them identifiable as accessors.

6.3.2 Example

Listing 6.3 shows code from JHotDraw version 7.0.87 that is at the beginning of a method body
and uses none of the arguments supplied to the method upon invocation. In the snippet, there
are a number of method invocations on the object stored in the view field.

83 view.getDrawing().fireUndoableEditHappened(edit = new
CompositeEdit("Punkt verschieben"));

84 Point2D.Double location =
view.getConstrainer().constrainPoint(
view.viewToDrawing(getLocation()));

Listing 6.3: Snippet from org.jhotdraw.draw.BezierControlPointHandle.java (JHotDraw 7.0.8)

In listing 6.4 one of the method invocations is replaced by an indirect anaphor of kind 2. Note
that this listing has not been compiled or tested, because the depicted variant of indirect anaphora
of kind 2 has not yet been implemented.

83 view.getDrawing().fireUndoableEditHappened(edit = new
CompositeEdit("Punkt verschieben"));

84 Point2D.Double location = .Constrainer.constrainPoint(
view.viewToDrawing(getLocation()));

Listing 6.4: The indirect anaphor .Constrainer in a modified version of listing 6.3

It may seem strange that no indirect anaphor is used at line 83 already to replace the invocation
of view.getDrawing() but view.getConstrainer() in line 84 is replaced instead.

7http://sf.net/projects/jhotdraw/files/JHotDraw/JHotDraw%207.0.x/jhotdraw-7.0.8.nested.zip/download

55

6 Indirect Anaphora for Java

The reason for this is that the anchor of .Constrainer in line 84 is the access to view in
line 83. The invocation of view.getDrawing() in line 83 cannot be replaced because there
is no prior access to view in the method body i.e. no anchor is available.

I expect this sample to be compilable once the implementation allows for invoking getter
methods on an anchor of an indirect anaphor.

Similar to the example in section 6.2.1, above use of indirect anaphora shortens the source
code by hiding where the Constrainer instance is obtained from. Whether this is going to
irritate or not needs to be shown in experiments measuring the fraction of programmers who are
able to understand the code (see section 8.2).

6.3.3 Preconditions

For an indirect anaphor of kind 2 to be compilable, the following conditions must hold.

1. The general preconditions laid out in section 6.1.1 are met.

2. The anchor fits one of the following cases.

a) It is a parameter declaration or a local variable declaration8. (The type referenced in
the declaration of the parameter or local variable is hereafter called the type of the
anchor. The value that the parameter holds at run-time is hereafter called the value
of the anchor.)

b) It is an access to an accessible field, an access to a local variable, an access to a
parameter, another indirect anaphor, or any other expression. (The type of the ex-
pression is hereafter called the type of the anchor. The value to which the expression
is evaluated to at run-time is hereafter called the value of the anchor.)

3. If the indirect anaphor is not the left-hand side operand of an assignment expression it
denotes either a variable or a value and only a single one of the following two cases
applies.

a) The type of the anchor declares or inherits exactly one field9 that is visible, accessible
(and static, if the indirect anaphor appears in a static method or in a static initializer)
and whose type is assignment compatible with the type of the indirect anaphor.

b) The type of the anchor declares or inherits exactly one getter method for which the
following is true at the location of the indirect anaphor: the getter method is visible,
accessible (and static, if the indirect anaphor appears in a static method or initializer)
and the type of the indirect anaphor is assignment compatible with the return type of
the getter method.

8+ tests.Kind2.test02ReadPublicFieldFromVariableDeclaration()
9- tests.Kind2.test01ReadNonExistentField()

56

6.3 Kind 2: Anchoring Based on Fields and Accessors

4. If the indirect anaphor is the left-hand side operand of an assignment expression10 it de-
notes a variable11 and only a single one of the following two cases applies.

a) The type of the anchor declares or inherits exactly one field for which the following
is true at the location of the indirect anaphor: the field is visible, accessible, non-final
(and static, if the indirect anaphor appears in a static method or in a static initializer)
and the type of the indirect anaphor is assignment compatible with the type of the
field.

b) The type of the anchor declares or inherits exactly one setter method for which the
following is true at the location of the indirect anaphor: the setter method is visible,
accessible (and static, if the indirect anaphor appears in a static method or initializer)
and the type of the indirect anaphor is assignment compatible with the type of the
parameter of the setter.

A compile-time error is raised if any of the abovementioned conditions is not met.

6.3.4 Postconditions

After an indirect anaphor of kind 2 has been compiled, the following conditions must hold.

1. If precondition 3a applies, the indirect anaphor does at runtime denote a variable, namely
the field indicated by precondition 3a which is provided by the object that is referred to
(in Java terms) by the value of the anchor. The field is accessed once every time that the
indirect anaphor is accessed, its value is not cached12. The value of the indirect anaphor
will be null if the value of the field is null.

2. If precondition 3b applies, the indirect anaphor does at runtime denote a value, namely
the value returned by an invocation of the getter method on the object that is referred to
(in Java terms) by the value of the anchor. The getter method is accessed once every time
that the indirect anaphor is accessed. Its value is not cached13.

3. If precondition 4a applies, the assignment expression mentioned in the precondition will
at run-time assign the value that its right-hand side has been evaluated to to the variable
denoted by the indirect anaphor. The variable denoted by the indirect anaphor is the field
indicated by precondition 4a which is provided by the object that is referred to (in Java
terms) by the value of the anchor. The field is assigned once every time that the indirect
anaphor is assigned a value.

10Note that an indirect anaphor is not the left-hand side operand of an assignment expression, if it is only a part of
the left-hand side operand. Field access expression can take the form Primary . Identifier that allows
e.g. an indirect anaphor to be used as the contained primary expression. In cases like these, the indirect anaphor
is not assigned a value, but the field denoted by the identifier is. In such cases, precondition 3 applies.

11This is also required for pre- and postfix increment and decrement operators, but since primitive types are not yet
supported (not even indirectly by using unboxing), these operators will be ignored.

12This is required so concurrent modifications of the field’s value are reflected in the value of the indirect anaphor.
13for the same reason as in the previous postcondition

57

6 Indirect Anaphora for Java

4. If precondition 4b applies, the indirect anaphor does not have a result at runtime. Instead,
the assignment expression mentioned in the precondition will at run-time pass the value
that its right-hand side has been evaluated to as an argument to the setter method indicated
by precondition 4b. The setter method is invoked on the object that is referred to (in Java
terms) by the value of the anchor. The setter method is invoked once every time that the
indirect anaphor is assigned a value.

5. A NullPointerException or a subclass of it will be thrown at runtime if the value of the
anchor is null. The exception shall have a message stating a broken indirect anaphora rela-
tion and indicate the anchor whose value could not be obtained, the first indirect anaphor
that refers to the anchor, the line number at which the first indirect anaphor occurs and the
number of indirect anaphors referring to the anchor if there is more than one of them. The
exception shall be thrown at the line of code in which the anchor occurs or begins.

6. The general postconditions laid out in section 6.1.2 are met.

A compiler does not provide a valid implementation of anchoring based on the header of invo-
cabled if any of the abovementioned conditions is not met.

6.3.5 Invariants

Before, during and after the compilation of an indirect anaphor of kind 2, the following condi-
tions must hold.

1. The general invariants laid out in section 6.1.3 are met.

6.4 Kind 3: Inference-Based Anchoring

Time was up before an implementation of inference-based anchoring could be started. The
idea is that for inference-based indirect anaphors, methods are generated by the compiler that
traverse accessors to retrieve the inferred referent. Implementation of inference-based anchoring
is assumed to require an implementation of thematic progression, focus and activity.

6.5 Summary

This chapter detailed descriptions of different kinds of indirect anaphors in Jaaa using pre- and
postconditions and invariants. All kinds share a number of conditions that need to be met, that
deal with concurrency, execution of anchors and line numbers. Three kinds have been proposed.
The first one, which has already been implemented, was derived from anchoring based on the-
matic roles and accesses the value returned or created by a method invocation expression or class
instance creation expression. The second kind has been implemented in minor parts only. It is
derived from meronymy-based and schema-based anchoring at the same time because Java does
not allow for a distinction between parts of an instance and objects directly related to it. Indirect
anaphors of the second kind can appear as the left-hand side operand of assignment expressions

58

6.5 Summary

which makes them function as variable assignment or setter invocation. In all other positions,
they will function as variable access or getter invocation. An annotation may be introduced
that marks unconventional accessors. The third kind of indirect anaphors, to be modeled after
inference-based anchoring has not yet been specified but will be based on traversing multiple
invocations of accessors and is expected to require an implementation of thematic progression.

59

7 Implementation

The implementation of Jaaa1 is based on the JastAddJ compiler (see [EH07]) which is a modular
Java compiler based on the JastAdd compiler construction system2 (see [EH06]). JastAdd uses
an aspect-oriented derivative of Java similar to AspectJ in order to allow compilers to be pro-
grammed. Features of JastAdd that proved useful for my work include attributes and rewrites.
JastAddJ uses a JFlex3 lexical grammar that I did not change in the course of my work. The
compiler is based on a parser created by the Beaver LALR(1) parser generator4 the grammar of
which I had to modify in order to implement indirect anaphora in Jaaa. In this chapter I will
provide details on the implementation of the different kinds of indirect anaphors specified in the
previous chapter as well as an overview over the test cases used to drive development. First of
all, the extent of the limitations of the implementation is illustrated, though.

7.1 Limitations of the Prototype

To give an idea of the limits of my prototypical implementation, the following non-exhaustive list
gives some shortcomings of the compiler that I am aware of. I am aware of further shortcomings
that are not in the list and there will be limitations that I am not aware of. It can generally not
be expected that the compiler is able to fulfill tasks not covered by the test cases (see the blue
footnotes throughout this document as well as table 7.1 on page 65).

• Exceptions declared by accessors are ignored by the prototype.

• The type of expressions that act as a potential anchor cannot be an array type or type
variable

• The type used in the IA cannot be an array type or type variable, generics/parameterized
types are not fully supported

• If more than one indirect anaphor is anchored in an anchor, multiple local variables are
created instead of sharing one.

• Indirect anaphors cannot be anchored in parts of ForInit and ForUpdate expressions or
parameters of methods or constructors.

• The compiler was not yet tested against real-world source code.

• Errors unrelated to indirect anaphora can lead to error messages related to indirect anaphora.
1See http://monochromata.de/shapingIA/.
2See http://jastadd.org/
3See http://jflex.de/
4See http://beaver.sourceforge.net/

61

7 Implementation

52 public static void runMainAndExit(JUnitSystem system,
String... args) {

53 new JUnitCore().runMain(system, args);
54 system.exit(.Result.wasSuccessful() ? 0 : 1);
55 }

Text

TWM

Source

AST

runMain(system, args) .Result.wasSuccessful()

Block

MethodAccess IndirectAnaphor

reference reference

||

||

Figure 7.1: Listing 6.2 reproduced, accompanied by the AST created by the parser and reference
relations

7.2 Kind 1: Anchoring Based on the Headers of Invocables

This section describes an implementation of what has been specified in section 6.2. Therefore,
the example given in section 6.2.1 is elaborated to provide insights into the implementation and
an anchoring algorithm is given that transforms an AST that fulfills the preconditions given in
section 6.2.2 into an AST that fits the postconditions given in section 6.2.3.

7.2.1 Example

While section 6.2.1 discussed two listings showing a code snippet before and after replacing a
local variable by an indirect anaphor, in this section I will discuss the compilation of the snippet
in the second listing 6.2, directly after parsing and after the AST has been transformed.

Figure 7.1 repeats listing 6.2 and provides a simplified AST as generated by the parser. To
keep the diagram compact, the indirect anaphora relation between the anchor runMain(system,
args) and the indirect anaphor .Result.wasSuccessful() and the lexicon entry related
to the anchor are not included in the diagram. The AST depicted also omits a number of nodes
(e.g. the MethodAccess node is actually not a direct child of the Block) – these omissions are
signalled by the crossed edges in the AST.

Yet the diagram is made to highlight resemblances to indirect anaphors anchored based on
thematic roles as illustrated in figure 2.2 on page 16. At the sides of figures 7.1 and 2.2 text
has been identified with source code and this identification is in line with the broad definition of
text from section 5.1. TWM and AST have been identified based on section 5.3.2. Along these
lines, the AST nodes act as referents of the anchor and the indirect anaphor. There is no relation
between the MethodAccess and the IndirectAnaphor node yet, since at the end of parsing text

62

7.2 Kind 1: Anchoring Based on the Headers of Invocables

52 public static void runMainAndExit(JUnitSystem system,
String... args) {

53 Result $anchor$0 = null;
54 new JUnitCore().runMain(((Result)($anchor$0 = system)),

args);
55 system.exit($anchor$0.wasSuccessful() ? 0 : 1);
56 }

Text

TWM

Memory

Source

AST

runMain(system, args) .Result

Block

Var.Decl. AssignSimpleExprBoundVarAccess

BoundVarAccess MethodAccess

≪method header≫
runMain

JUnitCore this
JUnitSystem system
String... args
Result (returned)

reference reference

||

||

Figure 7.2: Compiler transformations applied to contents of figure 7.1

understanding is not yet complete. The IndirectAnaphor node stems not only from the source
entity .Result but from the entire fragment .Result.wasSuccessful() because syntax
does not allow the parser to determine the end of the indirect anaphor in such an expression
which is why the entire expression is used to form an IndirectAnaphor node that is split up later
on.

Figure 7.2 shows selected elements and relations of the source code and AST created by
the compiler for listing 6.2 at a state when all transformations possible to the AST have been
performed. The listing at the top of the diagram shows how source code would look after such a
transformation (were the transformation applied to the source as well and not only to the AST).
This diagram is again simplified: only types of AST nodes are given, not the individual attributes
they contain and the crossed edges between Block, AssignSimpleExpr and BoundVarAccess
mask the complexity of the expressions in lines 54 and 55 of the listing – actually, the children

63

7 Implementation

of the Block are all from different lines of the listing.
The source code fragments of the anchor and indirect anaphor that the dashed reference re-

lations in the diagram originate from are not identical to the fragments in figure 7.1: the Indi-
rectAnaphor node has been split up and its remainder has been rewritten to a BoundVarAccess
node during the transformation. This BoundVarAccess, just like the other BoundVarAccess,
refers to the VariableDeclaration (Var.Decl.). All of these nodes have, along with the Assign-
SimpleExpr (an assignment expression) been introduced by the transformation, as can be seen
by comparing the listing in the figure to that of figure 7.1.

Compared to the TWM in figure 2.2 the AST of an indirect anaphor in Jaaa is way more com-
plex, especially with regard to the relation between the referents of indirect anaphor and anchor:
in figure 2.2 the relation is simply an edge between the nodes of the referents, while in figure
7.2 only an indirect relation exists that traverses a number of edges. This is due to my limited
knowledge of the models used in cognitive linguistics and their theoretical, static nature whereas
Jaaa is a real implementation that incorporates dynamics such as data flow that complicate the
AST. A similarity between natural language and Jaaa is the use of the anchor’s lexicon entry
(here: method header) in order to anchor the indirect anaphor during AST transformation. In-
stead of defaults as in figure 2.2, the method header contains types (see section 5.3.3) and even
an argument name that is currently unused during anchoring. Since runMain is not static, an
instance of the declaring class is implicitly provided, which is contained in the method header
as well. Note finally, that the method header is not a node in the AST but information provided
by the method declaration node that the method invocation expression node refers to.

7.2.2 Anchoring algorithm

If the preconditions from section 6.2.2 hold, the following anchoring algorithm will transform
the AST – not the source code – into a state that satisfies the postconditions given in section
6.2.3 without violating the invariants specified in section 6.2.4.

1. In front of the statement S containing the expression that acts as the anchor A of the indirect
anaphor IA insert the declaration of a new local variable V that has the type used in the IA
and a unique name5,6,7. Line numbers are not updated.

5This step is required to satisfy general invariant 1 stated on page 51 but it does not yet account for all possible
complications two of which have been uncovered already. (1) Within a constructor body, the implicit or explicit
constructor invocation must be the first statement [GJSB05, 242f.]. I assume that it is possible to insert synthetic
local variable declarations to store the value of arguments to the constructor invocations. This would need to
happen after step 1 and before steps 2 and 3 in [GJSB05, 322] which is before the fields of the instance have been
initialized. The Java Virtual Machine Specification limits operations performed on this before the invocation
of another initialization method within an instance initialization method to assignments to fields declared for the
class of this (see [LY99, 147]). Inserting local variable declarations and assignments to them seems hence to
be valid at this location. (2) If the statement containing the anchor is the last statement in a block and the indirect
anaphor is after the end (outside of) that block, the local variable declaration would need to precede the block,
not only the statement containing the anchor.

6 Note: the ForInit and ForUpdate parts of a for statement may contain an anchor. If that is the case, the entire for
statement is the one that is rewritten instead of S.

7+ tests.Kind1.test80AvoidCollisionWithExistingName()
+ tests.Kind1.test81NoInterferenceWithExistingVariable()
- tests.Kind1.test82NoVarAccessCanReferToGeneratedVariable()

64

7.3 Kind 2: Anchoring Based on Fields and Accessors

2. Replace8 the method invocation or class instance creation expression9 that acts as the
anchor A by a parenthetical expression that wraps a cast expression C that performs a cast
to the declared type of the result of A and contains an assignment expression that assigns
the result of A to the local variable V.

3. Rewrite the indirect anaphor IA into an access to the local variable V.

7.3 Kind 2: Anchoring Based on Fields and Accessors

This section describes an implementation of what has been specified in section 6.3. An anchor-
ing algorithm is given that, if the preconditions from section 6.3.3 hold, will transform the AST
– not the source code – into a state that satisfies the postconditions given in section 6.3.4 without
violating the invariants specified in section 6.3.5.

Note that the anchoring algorithm for this kind of indirect anaphor is incomplete and to the
most part unimplemented.

1. The value of the anchor is obtained in one of the following ways.

a) If the anchor is a parameter declaration or a local variable declaration, an access A
to the parameter or local variable will be used to obtain the value of the anchor at
run-time. Evaluation of A will at run-time happen immediately before the indirect
anaphor that is anchored in the declaration is evaluated10.

b) If the anchor is an access to a parameter or an access to a local variable, an access A
created from the declaration of the parameter or local variable will be used to obtain
the value of the anchor at run-time.

c) More ways are to be defined.

2. If the indirect anaphor denotes a field (see preconditions 3a and 4a), it is replaced by a
field access expression that is qualified by access A.

3. If the indirect anaphor denotes a getter G (see precondition 3b), it is replaced by a method
invocation expression M that does at run-time invoke G and M is qualified by access A.

4. If the indirect anaphor denotes a setter S (see precondition 4b), it is the left-hand side
operand of an assignment expression AE that has a right-hand side operand R and the
following steps are taken to compile the indirect anaphor.

8JastAddJ allows a node in the AST to be rewritten into a node of another type or a tree that can contain the original
node.

9Note that method invocation expressions (see [GJSB05, 440]) as well as class instance creation expressions (see
[GJSB05, 423]) have forms that contain a primary expression on the left that can be arbitrarily complex.

10The value denoted by A will be the same at the time when the execution of the declaration finished and the time
when the indirect anaphor is executed. If that was not the case, there would be an assignment to the parameter or
local variable between anchor and indirect anaphor that would itself be a suitable anchor and would thus lead to
referential ambiguity and a compiler error. Concurrent access to the value of a parameter or the value of a local
variable from another thread is equally impossible.

65

7 Implementation

a) A new private final method M is declared that has a unique name and is marked as
synthetic. M has a single parameter that has the type of the indirect anaphor. The
return type of M is the type of the indirect anaphor as well. The body of M contains
(1) a method invocation expression that invokes S with the argument of M and (2)
thereafter returns the value of M’s parameter11.

b) AE is replaced by a method invocation expression that does at run-time invoke M
and is qualified by access A, providing the result of R as an argument to M.

7.4 Test Case Nomenclature

The implementation was developed test-first with JUnit test cases 76 of which have been devel-
oped that are organized using the nomenclature given in table 7.1.

11 This is necessary because indirect anaphors are expressions i.e. are, in contrast to setter methods, evaluated to
a value, not nothing (void). This is especially relevant when the indirect anaphor appears as the left-hand side
operand of an assignment expression because it will in the next step replace the assignment expression. Then
the value that the indirect anaphor is evaluated to will function as the value that the assignment expression would
have been evaluated to.

66

7.4 Test Case Nomenclature

File Grouped tests Focus of the tests in the group

General 01 - 07 General tests on what expressions can be a suitable anchor
10 - 19b Types used as part of indirect anaphors
20 Refential ambiguity due to multiple occurences of a potential an-

chor (see point 1f on page 47 and section 5.4.3)
30 - 32 The 2-statements limit (see point 1i on page 47)
40 - 46 Assignment compatibility of the result type of the anchor to the

result type of the indirect anaphor (see section 5.4)
50 - 53 Multiple anaphors per anchor (see section 5.4.1)
60 - 64 Syntax of indirect anaphors (see section 5.2)

Kind1 01 - 05 Expressions involving method access of various complexity re-
ferred to by indirect anaphors of kind 1

20 - 22 Expressions involving class instance creation of various complex-
ity referred to by indirect anaphors of kind 1

30 - 33 Location of indirect anaphor
40 - 47b Indirect anaphors used to qualify access to a field or a method
60 - 61 Exceptions
80 - 82 Uniqueness of the names that are used for internally generated

local variables
90 - 96 Using indirect anaphors as or as part of the left- or right-hand side

operand of assignments or to initialize a local variable
Kind2 01 - 02 Retrieving and setting the value of fields

10 - 11 Referential ambiguity due to concurrent suitability of anchors for
kind 1

Table 7.1: Grouping of the test cases supplied with the implementation

67

8 Evaluation and Outlook

At the end of the way from cognitive linguistics to an initial Java-based implementation, before
proceeding to do what is yet to be done, time is available to look behind at the value of the current
findings. The evaluation in this chapter cannot be a final one, because only the simplest kinds
of indirect anaphora have yet been implemented. Hence, this chapter will only contain outlines
of a proper evaluation and discussions where evidence is desired. I will evaluate not only what
has been implemented but try to analyze potential developments of the general idea of statically-
resolved indirect anaphora in naturalistic programming. Therefore, the evaluation starts from the
aims laid out in the introduction and will then shift towards applicability of indirect anaphors,
the correctness of their resolution and finally discuss compatibility between Jaaa and Java.

Future Work 8.1 (Potential for evaluation) Areas that shall be included in a full evaluation
of statically-resolved indirect anaphora include the following. (1) Fragility: How easily indirect
anaphora break upon source code modifications in locations between an indirect anaphor and its
anchor and what can be done about this is important to consider. (2) Debuggability: Invisible
generated code is bad during debugging because there is no representation of the executed
statements in the source that the programmer sees. A dynamic source representation or an
intermediate source format after pre-compilation may help. The solution that AspectJ found to
this problem is to be considered. (3) Economical advancement: When all or a relevant number
of non-trivial kinds of indirect anaphora have been implemented, it will become possible to
measure to what extent use of indirect anaphora can shorten the source code of programs. (4)
Impact on tools: Tools for refactoring and other tasks will need to be adapted so they can detect
and process indirect anaphora. (5) Complexity: How does the compiler implementation scale?
(6) Fitness of the transfer: As indicated in section 5.5, the hypotheses underlying the approach of
a metaphorical transfer of indirect anaphors from natural language to programming languages
are that (a) the cognitive model used correctly describes how humans use natural language,
(b) it can be transferred to programming languages and (c) the transfer makes programming
languages intuitive as per section 3.2. All three hypotheses shall be proven. (a) is supported
by the samples in [Sch00], (b) will be proven by a successful implementation even though the
success of an implementation needs to be qualified, (c) requires experiments involving human
programmers.

8.1 Aims

As part of the introduction, section 1.2 lists goals that I wanted to reach as part of my work that
is documented here. I will not criticize myself for not getting my text done in time because I did
not attempt to reach an outcome well-known in advance. Instead, I will consider to what extent
the goals from section 1.2 have been reached.

69

8 Evaluation and Outlook

The first and foremost goal was to work out an access to the topic of natural language pro-
gramming. In that sense, the discovery of a useful model in cognitive linguistics literature was
a success that I expect to bear fruit for future work on the topic. The notion of programming
languages being a metaphor for coding systems lead to the idea of considering indirect anaphora
as a metaphor added to programming languages. The metaphor has been developed based on
Schwarz-Friesel’s cognitive model and provides a good framework to design the current specifi-
cation and implementation as well as future incarnations of these. The metaphor is expected to
be revised as work progresses, in the same way that it has already been revised considerably.

Verification of the proposals through practical applications is yet outstanding, partly because
the bottom-up approach did not yet unfold to full extent: the effect that control structures have on
indirect anaphora has not yet been considered. The impact of indirect anaphora on inheritance
and re-use has, during development of the concept, been minimized, which is positive, though.
Continued orientation towards the syntax of Java may help avoid proactive inference (see page
1). From the work done so far it seems that compile-time resolution of indirect anaphora is
viable. Specification and implementation are not yet complex enough to hit potential limits,
though. It is also not yet possible to compare whether dynamic (i.e. run-time) resolution of
indirect anaphora would lead to more possible referents or values denoted by an indirect anaphor.

8.2 Applicability

Will it be possible to make use of indirect anaphora in a relevant number of cases justifying the
effort to develop and use indirect anaphora? This question is suited to quantitative analysis if it
has been defined (a) what such a case is and (b) how such a case becomes relevant.

Use of indirect anaphora (mentioned as a case in (a)) is subject to conditions defined in sec-
tions 5.2 and 5.4 and in chapter 6 that have to be met for an indirect anaphor to be successfully
anchored and counted as a use of indirect anaphora. Since these conditions were and continue
to be in a state of flux, quantitative data that had been collected was discarded and will not be
collected before all relevant kinds of indirect anaphora have been implemented and thematic pro-
gression is used instead of the 2-statements limit which requires the specification of the breadth
of themes (see future work item 2.10 on page 24). Additionally, potential interferences between
multiple indirect anaphors need to be considered, especially when an indirect anaphor can refer
to other indirect anaphors. The impact of control structures and complex statements like for
statements may also be relevant to the development of indirect anaphora. Implementation of
direct and complex anaphora may defer quantitative analysis further1 or invalidate the results
at some point because new kinds of anaphora have (partly) the same syntax as all other kinds
but will affect when anaphora are applicable or when different kinds of anaphora apply. Having
mentioned the syntax of anaphors, it shall be noted that the syntax of anaphors may change with
time. Implementations of the Pegasus project include attribute specifications as part of anaphors

1When only indirect anaphora have been implemented, only those local variables can be replaced by anaphors that
are accessed exactly once after having been initialized. This is due to the fact that an indirect anaphor never refers
to the node of an anchor (this would be co-reference as in the case of the direct anaphor shown in figure 2.1 on
page 10) but to another node related to the node of the anchor. I.e. an indirect anaphor can be used to gain access
to a node, but cannot repeatedly access that node. This is why direct anaphors complement indirect anaphors,
because the direct ones can (repeatedly) take up what has been made accessible to them by the indirect ones.

70

8.3 Correctness of Resolution

and this will be necessary in Jaaa as well. Consider an object-oriented implementation of a tree
in which all nodes are instances of the same class that provides accessor methods to its direct
children and as well as to its indirect children. These methods will return collections of the same
type, leading to a compiler error when trying to refer anaphorically to (the return value of) one
of the methods using the collection type. A form of anaphor may be introduced that allows an
attribute or name to be combined with the type used in the indirect anaphor, which is a change
in the syntax of anaphors.

When uses of indirect anaphora can be counted, not all of them will be relevant. A relevant
use of indirect anaphora is one that makes it worth to use an indirect anaphor instead of ex-
isting features of Java. E.g. to replace local variables by indirect anaphors makes sense only
if one or more of the following criteria apply (1) the source code becomes shorter, and/or (2)
the source code becomes easier to understand by programmers. While (1) can easily by mea-
sured by counting the number of non-whitespace characters in source code, it is more difficult
to judge how hard it is for programmers to understand the meaning of source code. Discussion
of the examples in sections 6.2.1 and 6.3.2 pointed out that experiments are needed for this. The
reader-centric model of anaphora resolution from chapter 2 implies that this judgement is rela-
tive to individual programmers what would need to be accounted for in the experiment design.
There may be multiple experiments investigating different tasks as part of which programmers
try to understand code because with different tasks the code may be understood from different
perspectives: e.g. (1) reading the source code in order to comprehend what it is supposed to do
or (2) reading the source code augmented with run-time values during debugging to find out why
the program behaves differently than expected after reading the source code without run-time
values. Judgement of the intelligibility of code with indirect anaphors is not only relative to the
programmer and task, but also dynamic. The interaction of indirect anaphora and learning the
structure of an application will require attention. In Java source code the structure of an applica-
tion is either hard to miss or dissolves in detail. Indirect anaphora may remove the dissolution in
detail but may as well make it harder to get the structure because the underspecification of what
is assumed to be known is how indirect anaphora shortens texts. A help out of this problem may
lie in dynamic underspecification: the original author may underspecify, but new readers could
be presented an elaborated version of the source code that may become underspecified when it
is safe to assume that they learnt the structure of the application.

8.3 Correctness of Resolution

Not only the relevance of a use of indirect anaphora is dependent on the judgement of program-
mers. The correctness of the resolution of an indirect anaphor does depend on the individual
programmer as well. While a compiler will always be able to obey to any semantics considered
normative as long as it is correctly implemented, a human programmer is supposed to benefit
from naturalistic programming because the new means of reference in Jaaa are supposed to work
like means of reference that the programmer does already know from natural language. This can,
however, not be ensured by implementing a specification of semantics. Experimental evidence
is necessary showing that a relevant number of programmers confirm that the referents found for
indirect anaphors are the ones that they expect (see 3.2) and that proactive inference does not

71

8 Evaluation and Outlook

lead programmers to expect referents that the compiler does not refer to (see page 1).

8.4 Compatibility

Since Jaaa is an artifact of the evolution of programming languages, the question of compatibility
arises. The compatibility of different versions of Jaaa will not be considered because Jaaa is not
intended to be used except for furthering its development. Compatibility between Java and Jaaa
is important, though. There are two key questions concerning compatibility between Java and
Jaaa.

Can Java code be re-used in Jaaa programs? Indirect anaphors are syntactically dis-
tinguished by the leading "." that does not occur in a valid Java program i.e. the semantics
of Java are not modified in Jaaa. Hence, a Jaaa compiler must be able to compile Java pro-
grams because Jaaa is Java plus indirect anaphors which can be identified during parsing
already. Due to that, Jaaa programs can re-use Java source code as well as Java class files.

Can Jaaa code be re-used in Java programs? Since Jaaa adds another syntactic element
to Java, a Java compiler will not be able to compile Jaaa source code but produce a syntax
error instead. Java programs can, however, re-use Java class files produced by a Jaaa com-
piler because they adhere to the Java class file format. The description of APIs using the
Javadoc tool should also be possible for Jaaa source code, since indirect anaphors do not
surface at (class) interfaces that are relevant for inheritance and composition. This aspect
may be complicated if scripts are implemented in Jaaa which will not be associated to a
class in the traditional sense anymore (see future work item 5.1 on page 41).

8.5 Summary

After listing some potential for further evaluation, it was found that the focus on cognitive lin-
guistics that serves as the basis of this work will continue to bear fruit. Further judgements are
not yet possible, since the implementation is yet too early to be influenced by control structures
considerably. Similarly, it is not yet possible to compare statically-resolved anaphora imple-
mented here to the run-time resolution implemented as part of the Pegasus project. Whether
or not indirect anaphors are well applicable to programming problems is not yet to be judged,
because the syntax and semantics of indirect anaphors are expected to continue to change and
be impacted by introduction of direct and complex anaphors. A judgement of the applicability
of indirect anaphors is also not trivial, since it is relative to individual programmers and tasks
and needs to incorporate the dynamics of learning. Related to applicability is correctness of
resolution: whether the referents that the compiler resolves are the ones that programmers ex-
pect. It was finally highlighted that while Java sources and binaries can be re-used in Jaaa, only
Jaaa-binaries can be re-used in Java.

72

9 Summary and Conclusions

The idea of static resolution of indirect anaphors draws upon a number of existing works. The
earliest ones reach back to 1965: that year Jean E. Sammet, proposed the bottom-up approach
that I took on and there was even the idea of adding a pronoun to ALGOL. Lopes et al. renewed
interest in adding anaphora to programming languages and the Pegasus project finally imple-
mented them, resolving them at run-time. Hence, I chose to add a more complicated form to
Java (indirect anaphors) and to perform anaphora resolution at compile-time.

Definitions of reference, proper and common names and anaphora have been introduced from
natural language. More importantly, the perspective of cognitive semantics was adopted that
provide models of the structures and processes involved in anaphora resolution. These models
include a modular theory of mental representations, three-tier semantics that involve concep-
tual and semantic knowledge, a text-world model and how readers elaborate this model. Focus
and activity were described, that serve to explain the dynamic limitation of searches for an-
tecedents. Schwarz-Friesel’s process-oriented cognitive model of anaphora resolution was ex-
emplified, which distinguishes four kinds of indirect anaphora based on the knowledge involved
in their resolution: anchoring based on thematic roles, meronymy-based, schema-based and
inference-based anchoring. An corresponding algorithm for selecting a single suitable anchor
from a set of potential anchors that involves the economical selection of the kind of anchoring
to be applied was reproduced as well. My study of the literature in cognitive linguistics has
been partial only, thought. Besides the fact that I lack a general overview of the field, topics like
deixis, direct anaphora, instantiation and specialization of nodes in text-world models, forms of
knowledge representation, the (ad-hoc) creation of concepts and conceptual schemata as well
as inference processes and their relation to logical inference require further reading, as do is-
sues like the depth of conceptual decomposition, representation and granularity of theme and
rheme as well as thematic progression that are, to my knowledge, open questions in theoretical
linguistics, though.

The relations between natural languages and programming languages were outlined, of which
the metaphorical one – even though it is considered hypothetical for the past – is used as the basis
of this work. Naturalistic Programming was shown to be along the lines of that metaphorical
relation and criticism of usage of the term natural was added.

Existing means of reference implemented in Java have been analyzed using terminology from
linguistics. One outcome of the analysis was to highlight that names in Java that resemble words
from natural language embody a semantic gap caused by the fact that only the programmer
has access to the meaning from natural language. The semantic gap can potentially confuse
programmers. It was specified that indirect anaphors in Java shall resemble words from natural
language only carefully and that anchors shall be freely positionable.

A metaphor of indirect anaphora was developed through a transfer from natural language to
a dialect of Java called Jaaa and was elaborated at the levels of syntax, semantics and pragmat-

73

9 Summary and Conclusions

ics. The metaphor incorporates cognitive foundations and Schwarz-Friesel’s model of indirect
anaphors and their anchoring. It was argued that textual and memorized knowledge is identical
in Jaaa and that an abstract syntax tree of Jaaa source code functions as a text-world model. I
did not yet understand defaults well enough to fully integrate them into the metaphor. Similarly,
thematic progression is not yet implemented. However, it was found that referential ambiguity
can in some cases be automatically reduced in Jaaa. That the metaphor of indirect anaphora in
programming languages is rooted in cognitive linguistics suggests that it makes programming
languages more natural (i.e. known or easy to learn) which is a hypothesis that is yet to be
proven.

Three kinds of indirect anaphors have been proposed for Jaaa, giving pre- and postconditions
and invariants. The first one, which has already been implemented, was derived from anchoring
based on thematic roles and accesses the value returned or created by a method invocation ex-
pression or class instance creation expression. The second kind has been implemented in minor
parts only. It is derived from meronymy-based and schema-based anchoring at the same time
because Java does not allow for a distinction between parts of an instance and objects directly
related to it. Indirect anaphors of the second kind can appear as the left-hand side operand of
assignment expressions which makes them function as variable assignment or setter invocation.
In all other positions, they will function as variable access or getter invocation. An annotation
may be introduced that marks unconventional accessors. A third kind of indirect anaphors is to
be modeled after inference-based anchoring.

The prototypical implementation of the proposed indirect anaphors is based on JastAddJ,
a modular, aspect-oriented Java compiler whose implementation uses attributes and rewrites.
The implementation is quite limited: it has not yet been tested with real-world source code but
with artifical code samples only. Nothing not yet covered by the test cases can be expected to
work. The implementation of the first kind was introduced with a discussion of the parsed and
the transformed abstract syntax tree and has an anchoring algorithm that inserts, assigns and
accesses a local variable. An incomplete anchoring algorithm is given for the second kind that
is to the most part unimplemented. An overview of the test cases is provided.

The evaluation of this work is more of an outlook. While the aim of getting an idea of the
field was achieved and the focus on cognitive linguistics proved useful and is expected to bear
fruit, implementation is still so early that the impact of control structures cannot yet be judged
and a comparison to run-time resolution is yet unfeasible. Similarly, the applicability of indirect
anaphors to programming problems depends on upcoming changes to the syntax and semantics
of indirect anaphors and on the introduction of direct and complex anaphors. A judgement of
the applicability of indirect anaphors is also not trivial, since it is relative to individual program-
mers and tasks and needs to incorporate the dynamics of learning. Related to applicability is
correctness of resolution that expresses whether the referents that the compiler resolves are the
ones that programmers expect. It was finally highlighted that while Java sources and binaries
can be re-used in Jaaa, only binaries but not sources of Jaaa can be re-used in Java. The next
steps will hence be to complete the implementation of indirect anaphors of kind 2. Thereafter
indirect anaphors of kind 3, direct anaphors and thematic progression (no order implied) will
likely be researched, specified and implemented.

74

Bibliography

[Bus98] Carsten Busch. Metaphern in der Informatik. Deutscher Universitäts-Verlag, 1998.

[Cho57] Noam Chomsky. Syntactic Structures. Mouton & Co., The Hague, Paris, 1957.

[CKSF07] Manfred Consten, Mareile Knees, and Monika Schwarz-Friesel. The function of
complex anaphors in texts. In Monika Schwarz-Fiesel, Manfred Consten, and
Mareile Knees, editors, Anaphors in Text : cognitive, formal and applied ap-
proaches to anaphoric reference, volume 86 of Studies in Language Companion
Series, pages 81–102. John Benjamins, Amsterdam, 2007.

[Cla75] Herbert H. Clark. Bridging. In Proceedings of the 1975 workshop on Theoretical
issues in natural language processing, TINLAP ’75, pages 169–174, Morristown,
NJ, USA, 1975. Association for Computational Linguistics.

[Con04] Manfred Consten. Anaphorisch oder deiktisch?: Zu einem integrativen Modell
domänengebundener Referenz. Niemeyer, Tübingen, 2004.

[Coo07] William R. Cook. Applescript. In Proceedings of the third ACM SIGPLAN con-
ference on History of programming languages, HOPL III, pages 1–1–1–21, New
York, NY, USA, 2007. ACM.

[Dic11a] Oxford Dictionaries. http://oxforddictionaries.com/definition/naturalistic, last
checked 14 April 2011.

[Dic11b] Oxford Dictionaries. http://oxforddictionaries.com/definition/natural, last checked
10 May 2011.

[Dij78] E.W. Dijkstra. On the foolishness of ’natural language programming’. Unpublished
Report, 1978.

[EH06] Torbjörn Ekman and Görel Hedin. The jastadd system – modular extensible com-
piler construction. In Torbjörn Ekman, editor, Extensible Compiler Construction
(Diss.), pages 61–73. 2006.

[EH07] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler. In Com-
panion to the 22nd ACM SIGPLAN conference on Object-oriented programming
systems and applications companion, OOPSLA ’07, pages 884–885, New York,
NY, USA, 2007. ACM.

[FBP05] James Fan, Ken Barker, and Bruce Porter. Indirect anaphora resolution as semantic
path search. In Proceedings of the 3rd international conference on Knowledge
capture, K-CAP ’05, pages 153–160, New York, NY, USA, 2005. ACM.

75

Bibliography

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java(TM) Language
Specification. Addison Wesley, 3rd edition, 2005.

[Hen08] Jördis Hensen. Die Integration von Referenzierungsmechanismen der natürlichen
Sprache in Programmiersprachen. Diploma thesis, Technische Universität Darm-
stadt, October 2008.

[HH76] M. A. K. Halliday and Ruaqiya Hasan. Cohesion in English. Longman, Harlow,
1976.

[Hig67] Bryan Higman. A comparative study of programming languages. Macdonald,
London, 1967.

[Hil65] I. D. Hill. Some remarks on algol 60. ALGOL Bulletin, (21):70–74, November
1965.

[KM06] Roman Knöll and Mira Mezini. Pegasus: first steps toward a naturalistic program-
ming language. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN sympo-
sium on Object-oriented programming systems, languages, and applications, pages
542–559, New York, NY, USA, 2006. ACM.

[Lan07] Willy van Langendonck. Theory and Typology of Proper Names. Mouton de
Gruyter, Berlin, 2007.

[LDLL03] Cristina Videira Lopes, Paul Dourish, David H. Lorenz, and Karl Lieberherr. Be-
yond aop: toward naturalistic programming. SIGPLAN Not., 38(12):34–43, 2003.

[LL05] Hugo Liu and Henry Lieberman. Metafor: visualizing stories as code. In IUI
’05: Proceedings of the 10th international conference on Intelligent user inter-
faces, pages 305–307, New York, NY, USA, 2005. ACM.

[LY99] Tim Lindholm and Frank Yellin. The Java(TM) Virtual Machine Specification.
Addison Wesley, 2nd edition, 1999.

[Mit02] Ruslan Mitkov. Anaphora Resolution. Longman, London etc., 2002.

[Nau92] Peter Naur. Computing: A Human Activity, chapter Programming Languages, Nat-
ural Languages and Mathematics (1975), pages 22–36. ACM Press, New York,
1992.

[PMMH04] Massimo Poesio, Rahul Mehta, Axel Maroudas, and Janet Hitzeman. Learning
to resolve bridging references. In Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics, ACL ’04, Morristown, NJ, USA, 2004.
Association for Computational Linguistics.

[Ras00] Jef Raskin. The Humane Interface: New Directions for Designing Interactive Sys-
tems. Addison-Wesley Professional, 2000.

[Sae03] John I. Saeed. Semantics. Blackwell, Oxford etc., 2. edition, 2003.

76

Bibliography

[Sam66] Jean E. Sammet. The use of english as a programming language. Commun. ACM,
9(3):228–230, 1966.

[Sch00] Monika Schwarz. Indirekte Anaphern in Texten. Niemeyer, Tübingen, 2000.

[Sch08] Monika Schwarz. Einführung in die Kognitive Linguistik. A. Francke, Tübingen
and Basel, 3rd edition, 2008.

[SF07] Monika Schwarz-Fiesel. Indirect anaphora in text: A cognitive account. In Monika
Schwarz-Fiesel, Manfred Consten, and Mareile Knees, editors, Anaphors in Text
: cognitive, formal and applied approaches to anaphoric reference, volume 86 of
Studies in Language Companion Series, pages 3–20. John Benjamins, Amsterdam,
2007.

[Shn80] Ben Shneiderman. Software Psychology. Winthrop, Cambridge, Massachusetts,
1980.

[Sta09] Daniel Staesche. Rava – Naturalistic References in Java. Bachelor’s thesis, Tech-
nische Universität Darmstadt, August 2009.

[SWC+95] Neil A. Stillings, Steven E. Weisler, Christopher H. Chase, Mark H. Feinstein,
Jay L. Garfield, and Edwina L. Rissland. Cognitive Science: An Introduction. MIT
Press, 2. edition, 1995.

[Zem66] H. Zemanek. Semiotics and programming languages. Commun. ACM, 9(3):139–
143, March 1966.

77

	List of Future Work
	Preface
	Introduction
	Related Work
	Aim
	Problem
	Organization

	Reference in Natural Languages
	Reference, Names, Deixis and Anaphora
	Common and Proper Names
	Direct Anaphora
	Pronominal anaphora
	Ellipsis
	Definite descriptions

	Cognitive Foundations
	Mental representations of knowledge
	Text-world models
	Focus and activity

	Indirect Anaphora
	Anchoring based on thematic roles
	Meronymy-based anchoring
	Schema-based anchoring
	Inference-based anchoring
	Anchoring of indirect anaphors

	Summary

	The Relations Between Natural Languages and Programming Languages
	Programming Languages Considered Languages
	Naturalistic Programming Languages
	Summary

	Reference in Java
	Names
	Deixis
	Zero Anaphors
	Requirements for Indirect Anaphora in Java
	Summary

	Constructing a Metaphor
	Pragmatics
	Syntax
	Cognitive Foundations
	Representations of knowledge
	Abstract syntax trees as text-world models
	Defaults, initializers and declared types
	When elaboration happens

	Semantics
	Indirect anaphors
	Anchoring
	Referential ambiguity

	Naturalness
	Summary

	Indirect Anaphora for Java
	General Properties of Indirect Anaphors in Java
	Preconditions
	Postconditions
	Invariants

	Kind 1: Anchoring Based on Headers of Invocables
	Example
	Preconditions
	Postconditions
	Invariants

	Kind 2: Anchoring Based on Fields and Accessors
	Accessors
	Example
	Preconditions
	Postconditions
	Invariants

	Kind 3: Inference-Based Anchoring
	Summary

	Implementation
	Limitations of the Prototype
	Kind 1: Anchoring Based on the Headers of Invocables
	Example
	Anchoring algorithm

	Kind 2: Anchoring Based on Fields and Accessors
	Test Case Nomenclature

	Evaluation and Outlook
	Aims
	Applicability
	Correctness of Resolution
	Compatibility
	Summary

	Summary and Conclusions
	Bibliography

